

Declaration code EPD-RQK-GB-76.0

Roto Frank DST Produktions-GmbH

Roof windows

Plastic roof window RotoQ

Basis:

DIN EN ISO 14025 EN 15804 + A2

Company EPD Environmental Product Declaration

> Publication date: 04.12.2023 Valid until: 04.12.2028

CALIFORNIA CONTRACTOR CONTRACTOR

ift Rosenheim GmbH Theodor-Gietl-Str. 7-9 83026 Rosenheim GERMANY

+49 8031 261-0
 info@ift-rosenheim.de
 www.ift-rosenheim.de

Accredited Certification Body Products + Services EN ISO/IEC 17065 **Environmental Product Declaration (EPD)**

Declaration code EPD-RQK-GB-76.0

Programme operator	ift Rosenheim GmbH Theodor-Gietl-Straße 7-9 83026 Rosenheim, Germany		
Practitioner of the LCA	PeoplePlanetProfit GmbH Gerberstraße 7 88250 Weingarten, Germany		
Declaration holder	Roto Frank DST Produktions-GmbH Wilhelm Frank Str. 38-40 97980 Bad Mergentheim, Germany www.roto-frank.com		
Declaration code	EPD-RQK-GB-76.0		
Designation of declared product	Plastic roof window RotoQ		
Scope	Pitched roof windows allow a view to the outside, effective ventilation of the attic and provide access to natural daylight.		
Basis	This EPD was prepared on the basis of EN ISO 14025:2011 and DIN EN 15804:2012+A2:2019. In addition, the "Allgemeiner Leitfaden zur Erstellung von Typ III Umweltproduktdeklarationen" (General guideline for preparation of Type III Environmental Product Declarations) applies. The Declaration is based on the PCR documents "PCR Part A" PCR-A-0.3:2018 and "Windows, flat roof windows, rooflights and light bands" PCR-FE-3.0:2023 as well as EN 17213 "PCR for Windows and Doors."		
	Publication date: 04.12.2023	Last revision: 15.01.2024	Valid until: 04.12.2028
Validity	This verified Company Environmental Product Declaration (company EPD) applies solely to the specified products and is valid for a period of five years from the date of publication in accordance with DIN EN 15804.		
LCA Basis	The LCA was prepared in accordance with DIN EN ISO 14040 and DIN EN ISO 14044. The data are based on both the data compiled from two production sites of Roto Frank DST Produktions-GmbH and the generic data derived from the "LCA for Experts 10" database. LCA calculations were carried out for the included "cradle to grave" including all upstream chains (e.g. raw material extraction, etc.).		
Notes	The "Conditions and Guidance on the Use of ift Test Documents" apply. The declaration holder assumes full liability for the underlying data, certificates and verifications.		
\sim 1			

Rinitian Chres

T. Mielahr

Jane Vch

Christian Kehrer Head of Certification and Surveillance Body

Dr. Torsten Mielecke Chairman of Expert Committee ift-EPD and PCR

Susanne Volz External Verifier

ift Rosenheim GmbH Theodor-Gietl-Str. 7-9 83026 Rosenheim GERMANY

⊕ +49 8031 261-0
 ● info@ift-rosenheim.de
 www.ift-rosenheim.de

Accredited Certification Body Products + Services EN ISO/IEC 17065

Page 3

Product group Roof windows

1 **General Product Information**

Product definition

The EPD relates to the product group Roof windows and applies to:

1 m² Plastic roof window RotoQ of company Roto Frank DST Produktions-GmbH

They are subdivided into following product groups (PG): ¹ Bold = Reference products

Product group	Designa	ation ¹	Reference size
PG 1 Q4 Plastic double glazing	Q42C K200 Q42C K2E_ Q42C K2EF Q42C K2SF Q42C K2RA Q42C K200AV1 Q42C K200AV2	Q42P K200 Q42P K2E_ Q42P K2EF Q42P K2SF	1.23 m * 1.48 m
PG 2 Q4 Plastic triple glazing	Q43C K200 Q43C K2E_ Q43C K2EF Q43C K2SF Q43C K2RA Q43C K200AV1 Q43C K200AV2	· —	1.23 m * 1.48 m
PG 3 Q4 Plastic acoustic glazing	Q43A K200 Q43A K2E_	Q43A K2EF Q43A K2SF	1.23 m * 1.48 m
Abbreviations: Material: "K" - plastic Drive unit: "00" - without drive; "E_" - wired drive; "EF" - radio- controlled drive; "SF" - solar drive Other: "RA" - smoke outlet, sensor-controlled; "AV1" - window variant for roof flashing AV1; "AV2" - window variant for roof flashing AV2			

 Table 1
 Product groups

Page 4

	, , , , , , , , , , , , , , , , , , , ,			
PG	Assessed product ²	Declared unit	Surface weight	Thickness
PG 1	Q42P K2E_ Q42P K2EF Q42P K2SF	1 m²	42.60 kg/m²	176.62 mm
PG 2	Q43C K2E_ Q43C K2EF Q43C K2SF	1 m²	51.93 kg/m²	176.62 mm
PG 3	Q43A K2E Q43A K2EF Q43A K2SF	1 m²	61.61 kg/m²	176.62 mm

The declared unit is obtained by summing up:

² The balanced products per PG are identical in terms of their material costs and differ only in the integrated drive unit. This was considered separately (see Table 10)

 Table 2 Functional unit per reference product

The average unit is declared as follows:

Directly used material flows are determined using standardized sizes (1.23 m * 1.48 m) and allocated to the declared unit. All other inputs and outputs in the production were scaled to the declared unit in their entirety since no direct assignment to the standardized size is possible. The reference period is the year 2022.

The validity of the EPD is restricted to the series listed in Table 1.

Product description

Roof window with plastic hollow chamber profile with central horizontal pivot axis for pitched roofs.

Overall frame dimensions (mm)	Overall insulation block dimension (mm)	Frame clear dimension (mm)	Inner lining clear dimension (mm)
550/774 - 1,340/1,596	610/834 - 1,400/1,656		495/719 - 1,285/1,541
Overall casement dimensions plastic (mm)	Casement clear dimension (mm)	Light area (m ²)	Ventilation area (m² with 600 mm opening width)
467/688 - 1,257/1,510	381/571 - 1,171/1,393	0.22 - 1.63	0.72 - 1.42
Type of opening / opening direction	Frame material	Construction type	Surface
Central horizontal pivot axis	PVC multi- chamber profile	Horizontal pivot window	Plastic roof window in white as standard, decorative foils are also available
Sealing systems			
2x sash gaskets, sealants made of TPE and TPV			

For a detailed product description refer to the manufacturer specifications or the product specifications of the respective offer/quotation.

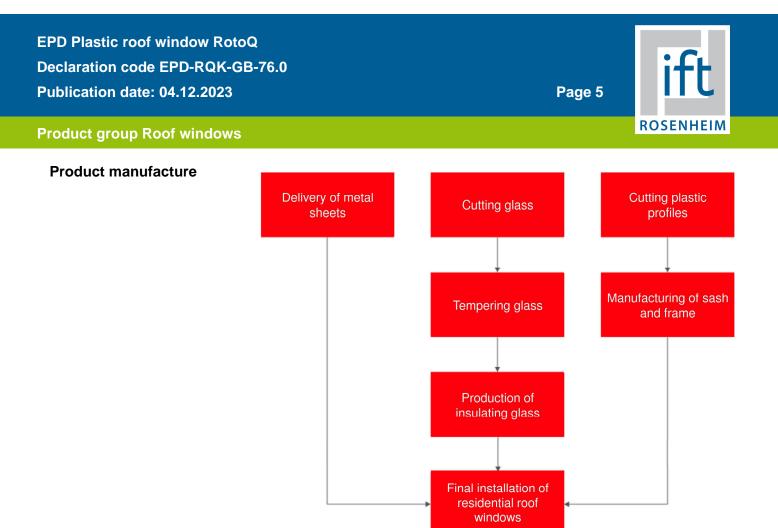


Illustration 1 Product manufacture of plastic windows

ApplicationPlastic roof windows for installation in pitched roofs with a roof inclination
of 15° to 79°. With its central horizontal pivot ax is, the roof window
guarantees effective ventilation of the attic and provides access to natural
daylight.

Management systems

The following management systems are held:

• Quality management system according to DIN EN ISO 9001:2015

Additional information For additional verifications of applicability or conformity refer to the CE marking and the documents accompanying the product, if applicable.

Plastic roof window RotoQ meet the following building physics performance characteristics*:

Thermal insulation value of window (UW value as per DIN EN ISO 10077, DIN EN ISO 12567-2)	Sound reduction index in dB (RWP value (C; Ctr) as per EN ISO 20140-3, EN ISO 717-1)
0.85	44 (-2;-6) dB
Sound reduction class / sound reduction grade (as per VDI guideline 2719) 52	Air permeability class (as per DIN EN 12207)
4	4
Thermal insulation value of pane1 (Ug-value as per DIN EN 673)	Total solar energy transmittance (g-value in % as per DIN EN 410)
0.6	37

Product group Roof windows

Page 6

Light transmittance (TL value in % as per DIN EN 410)	Resistance to wind load (as per DIN EN 12210)
56	C5
Resistance to snow (permanent load)	Reaction to fire (as per DIN EN 13501-1)
TSG4/12/TSG4/12/LSG6	B-s3,d0
Resistance to external fire (as per DIN EN 13501-5)	Watertightness (as per DIN EN 12208)
Broof(t1)	E 1200
Impact resistance class (as per DIN EN 13049)	Load-bearing capacity of safety devices (as per DIN EN 14609:2004)
4 - 700 mm	350 N

* The performance characteristics listed here vary from product to product. The values given are the maximum performance achieved within the product group.

2 Materials used

Primary materialsThe raw materials used can be found in Section 6.2 Inventory analysis
(Inputs).
The primary materials used are listed in the LCA (see Section 6).Declarable substancesNo substances according to REACH candidate list are included
(declaration of 06.11.2023).

All relevant safety data sheets can be obtained from company Roto Frank DST Produktions-GmbH.

3 Construction process stage

Processing recommendations, installation 4 Use stage	Operating and maintenance instructions can be found at https://www.roto- frank.com/de/dst/profi/bedienungs-und-wartungsanleitungen.
Emissions to the environment	No emissions to water and soil are known. A test report for the assessment of emissions of Volatile Organic Compounds (VOC) according to ISO 16000 is available. Test results were taken into account in the life cycle assessment (see Annex/B1).
Reference service life (RSL)	The RSL information was provided by the manufacturer. The RSL must be established under specified reference conditions of use and relate to the declared technical and functional performance of the product within the building. It must be determined according to all specific rules given in European product standards or, if none are available, according to a c-PCR. It must also take into account ISO 15686-1, -2, -7 and -8. If there is guidance on deriving RSLs from European Product Standards or a c-PCR, then such guidance must take precedence. If it is not possible to determine the service life as the RSL in accordance with ISO 15686, the BBSR table "Nutzungsdauer von Bauteilen zur Lebenszyklusanalyse nach BNB" (service life of building components for

life cycle assessment in accordance with the sustainable construction evaluation system) can be used. For further information and explanations refer to <u>www.nachhaltigesbauen.de</u>.

For this EPD the following applies: For a "cradle to grave" EPD and Module D (A + F

For a "cradle to grave" EPD and Module D (A + B + C + D), a reference service life (RSL) must be specified.

The service life of the Plastic roof window RotoQ of company Roto Frank DST Produktions-GmbH is specified with 40 years according to the manufacturer.

The service life is dependent on the characteristics of the product and inuse conditions.

The service life solely applies to the characteristics specified in this EPD or the corresponding references.

The RSL does not reflect the actual life time, which is usually determined by the service life and the redevelopment of a building. It does not give any information on the useful life, warranty referring to performance characteristics or guarantees.

5 End-of-life stage

Possible end-of-life stages The Plastic roof window RotoQ are sent to central collection points. There the products are usually shredded and sorted into their constituents. The end-of-life stage depends on the site where the products are used and is therefore subject to the local regulations. Observe the locally applicable regulatory requirements.

In this EPD, the modules of after-use are presented according to the market situation (according to EN 17213). Metals, glass and plastics are recycled to certain parts. Other plastics are thermally recycled, residual fractions are sent to landfill. A reuse scenario for the Dekura and Rewindo recycling initiatives is also depicted.

Disposal routes The LCA includes the average disposal routes.

All life cycle scenarios are detailed in the Annex.

6 Life Cycle Assessment (LCA)

Environmental product declarations are based on life cycle assessments (LCAs) which use material and energy flows for the calculation and subsequent representation of environmental impacts.

As a basis for this, life cycle assessments were prepared for Plastic roof window RotoQ. These LCAs are in conformity with the requirements set out in DIN EN 15804 and the international standards DIN EN ISO 14040, DIN EN ISO 14044, ISO 21930 and EN ISO 14025.

The LCA is representative of the products presented in the Declaration and the specified reference period.

6.1 Definition of goal and scope

Aim

The goal of the LCA is to demonstrate the environmental impacts of the products. In accordance with DIN EN 15804, the environmental impacts covered by this Environmental Product Declaration are presented for the entire product life cycle in the form of basic information. Environmental impacts for "pure windows" and drive units are stated separately.

Data quality, data availability and geographical and timerelated system boundaries The specific data originate exclusively from the 2022 fiscal year. They were collected on-site at the plant located in Bad Mergentheim and originate in parts from company records and partly from values directly obtained by measurement. Validity of the data was checked by the ift Rosenheim.

The generic data originates from the professional database and building materials database software "LCA for Experts 10". The last update of both databases was in 2023. Data from before this date originate also from these databases and are not more than 5 years old. No other generic data were used for the calculation.

Generic data are selected as accurately as possible in terms of geographic reference. If no country-specific data sets are available or if the regional reference cannot be determined, European or globally valid data sets are used.

Data gaps were either filled with comparable data or conservative assumptions, or the data were cut off in compliance with the 1% rule.

The life cycle was modelled using the sustainability software tool "LCA for Experts" for the development of life cycle assessments.

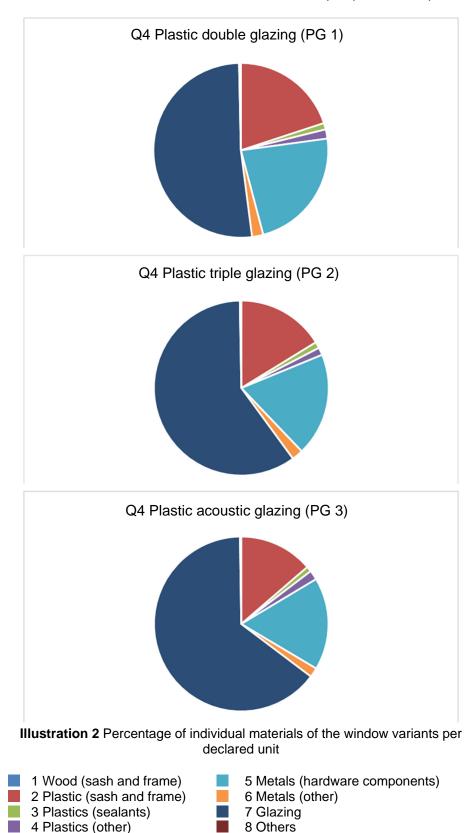
The data quality complies with the requirements of prEN 15941:2022.

Product group Roof windows

Page 9

rioddel group Roor windows	
Scope / system boundaries	The system boundaries refer to the supply of raw materials and purchased parts, manufacture/production, use and end-of-life stage of the Plastic roof window RotoQ. For float glass (FG), laminated safety glass (LSG) and separately issued environmental impacts for drive units, additional specific data for production at the pre-suppliers was taken into account (FG: M-EPD-FEV-002000; LSG: M-EPD-MIG-002000; drive units: M-EPD-AZR-103). No additional data from pre-suppliers or other sites were taken into consideration.
Cut-off criteria	All company data collected, i.e. all commodities/input and raw materials used, the thermal energy and electricity consumption, were taken into consideration. The boundaries cover only the product-relevant data. Building sections/parts of facilities that are not relevant to the manufacture of the products, were excluded.
	 The transport distances of the pre-products used were taken into consideration as a function of 100% of the mass of the products. The transport distances for auxiliary materials are not recorded in the company, but are mapped in the LCA assuming a transport mix. The transport mix is consisted as follows and is derived from the research project "EPDs for transparent components": Truck, 26 – 28 t total weight / 18.4 t payload, Euro 6, freight, 85% capacity used, 100 km, Truck-trailer, 28 – 34 t total weight / 22 t payload, Euro 6, 50% capacity used, 50 km, Freight train, electrical and diesel driven; D 60%, E 51% capacity used, 50 km, Seagoing vessel, consumption mix, 50 km. No transportation routes for waste recycling in A3 were taken into account. The criteria for the exclusion of inputs and outputs as set out in DIN EN 15804 are fulfilled. From the data analysis it can be assumed that the total of negligible processes per life cycle stage does not exceed 1% of the mass/primary energy. This way the total of negligible processes than 1%.
6.2 Inventory analysis	
Aim	All material and energy flows are described below. The processes covered are presented as input and output parameters and refer to the declared units.

Life cycle stages	The complete life cycle of Plastic roof window RotoQ is shown in the annex. The product stage "A1 – A3", construction process stage "A4 – A5", use stage "B1 – B7", end-of-life stage "C1 – C4" and the benefits and loads beyond the system boundaries "D" are considered.
Benefits	 The below benefits have been defined as per DIN EN 15804: Benefits from recycling Benefits (thermal and electrical) from incineration
Allocation of co-products	Allocations occur during production. The allocation was based on production costs (economic value).
Allocations for re-use, recycling and recovery	If the products are reused/recycled and recovered during the product stage (rejects), the elements are shredded, if necessary and then sorted into their constituents. This is done by various process plants, e.g. magnetic separators. The system boundaries were set following their disposal, reaching the end-of-waste status.
Allocations beyond life cycle boundaries	The use of recycled materials in the manufacturing process was based on the current market-specific situation. In parallel to this, a recycling potential was taken into consideration that reflects the economic value of the product after recycling (recyclate). Secondary materials that enter the production process as input are calculated in module A1 as input without loads. No benefits are assigned to Module D, but consumption to Modules C3 and C4 (worst case consideration). The system boundary set for the recycled material refers to collection.
Secondary material	The use of secondary material in Module A3 was considered for Roto Frank DST Produktions-GmbH. Secondary materials are used.
Inputs	The LCA includes the following production-relevant inputs per 1 m ² Plastic roof window RotoQ:
	Energy The "electricity mix Germany 2021" is used for the electricity mix in plant 97980 Bad Mergentheim. For self-generated electricity (solar energy), "electricity from photovoltaic Germany" is used. The input material of heating oil is based on "Thermal energy from heating oil".
	A portion of the process heat is used for space heating. This can, however, not be quantified, hence a "worst case" figure was taken into account for the product.
	Water In the individual process steps for production, the water consumption is 97 I (Q42P K2E), 212 I (Q43C K2E) as well as 84 I (Q43A K2E) per m ² element. The consumption of fresh water specified in Section 6.3 originates (among others) from the process chain of the pre-products and the process water for cooling.


Product group Roof windows

Page 11

Raw material/Pre-products

The chart below shows the share of raw materials/pre-products in percent.

Prod	luct o	aroup	Roof	wind	ows
		. • • • •			

Page 12

No	Material	Mass in %			
INO.		PG 1	PG 2	PG 3	
1	Wood (sash and frame)	0	0	0	
2	Plastic (sash and frame)	20	16	14	
3	Plastics (sealants)	1	1	1	
4	Plastics (other)	2	1	2	
5	Metals (hardware components)	23	19	17	
6	Metals (other)	2	2	2	
7	Glazing	52	60	64	
8	Others	0	0	0	

Table 3 Percentage of individual materials per declared unit

Illustration 3 Percentage of individual materials of the individual materials of drive unit per declared unit

No	Material	Mass in %
INO.		Drive unit Q4
1	Drive unit D+H	37
2	Other electrical components	13
3	Metals	34
4	Plastics	10
5	Wood	< 1
6	Paper/cardboard	6

Table 4 Percentage of individual materials of drive unit in % per declared unit

Ancillary materials and consumables

There are 2 g (PG 1), 5 g (PG 2) and 2 g (PG 3) of ancillary materials and consumables.

Product packaging

The amounts used for product packaging are as follows:

No.	Material	Ν	/lass in kg	
INO.		PG 1	PG 2	PG 3
1	Styrofoam	1.02	2.23	0.89
2	Cardboard	10.10	21.98	8.76
3	Pallets	8.09	17.61	7.01

Table 5 Weight in kg of packaging per declared unit

No additional packaging is required for balanced drive units and (electrical) components.

Biogenic carbon content

According to EN 16449, the following amounts of biogenic carbon are generated:

No.	Part	Conter	it in kg C p	oer m ²
INO.	Fait	PG 1	PG 2	PG 3
1	In product	0.05	0.05	0.05
2	In the associated packaging	7.24	15.75	6.28

Table 6 Biogenic carbon content in product and packaging at the factory gate

Outputs The LCA includes the following production-relevant outputs per 1 m² Plastic roof window RotoQ:

Waste

Secondary raw materials were included in the benefits. See Section 6.3 Impact assessment.

Waste water

During production, 97 I (PG 1), 212 I (PG 2) and 84 I (PG 3) of wastewater is generated.

6.3 Impact assessment

Aim The impact assessment covers both inputs and outputs. The impact categories applied are stated below:

Core indicators

The models for impact assessment were applied as described in DIN EN 15804-A2.

The core indicators presented in the EPD are as follows:

- Climate change total (GWP-t)
- Climate change fossil (GWP-f)
- Climate change biogenic (GWP-b)
- Climate change land use & land use change (GWP-I)
- Ozone depletion (ODP)
- Acidification (AP)
- Eutrophication freshwater (EP-fw)
- Eutrophication salt water (EP-m)
- Eutrophication land (EP-t)
- Photochemical ozone creation (POCP)

Page 14

Product group Roof windows

- Depletion of abiotic resources fossil fuels (ADPF) •
- Depletion of abiotic resources minerals and metals (ADPE)
 - Water use (WDP)

Resource management

The models for impact assessment were applied as described in DIN EN 15804-A2.

The following resource use indicators are presented in the EPD:

- Renewable primary energy as energy source (PERE)
- Renewable primary energy for material use (PERM) •
- Total use of renewable primary energy (PERT) •
- Non-renewable primary energy as energy source (PENRE) •
- Renewable primary energy for material use (PENRM) •
- Total use of non-renewable primary energy (PENRT)
- Use of secondary materials (SM)
- Use of renewable secondary fuels (RSF) •
- Use of non-renewable secondary fuels (NRSF) •
- Net use of freshwater resources (FW) •

Waste

The waste generated during the production of 1 m² Plastic roof window RotoQ is evaluated and shown separately for the fractions trade wastes, special wastes and radioactive wastes. Since waste handling is modelled within the system boundaries, the amounts shown refer to the deposited wastes. A portion of the waste indicated is generated during the manufacture of the pre-products.

The models for impact assessment were applied as described in DIN EN 15804-A2.

The following waste categories and indicators for output closures are presented in the EPD:

- Disposed hazardous waste (HWD)
- Non-hazardous waste disposed (NHWD)
- Radioactive waste disposed (RWD)
- Components for re-use (CRU)

- Materials for recycling (MFR)
- Materials for energy recovery (MER)
- Exported electrical energy (EEE)
- Exported thermal energy (EET)

Additional environmental impact indicators

The models for impact assessment were applied as described in DIN EN 15804-A2.

The additional impact categories presented in the EPD are as follows:

- Particulate matter emissions (PM)
- Ionizing radiation, human health (IRP)
- Ecotoxicity freshwater (ETP-fw)
- Human toxicity, carcinogenic effects (HTP-c)
- Human toxicity, non-carcinogenic effects (HTP-nc)
- Impacts associated with land use/soil quality (SQP)

ift					Re	sults per 1	m² Q4 d	ouble plas	tic (PG 1)							
ROSENHEIM	Unit	A1-A3	A4	A5	B1	B2	B3	B4	B5	B 6	B7	C1	C2	C3	C4	D
							Core ind							•	•	
GWP-t	kg CO ₂ equivalent	131.29	1.63	6.94	0.00	3.00	0.00	3.16	0.00	0.00	0.00	0.00	0.13	11.20	0.29	-50.10
GWP-f	kg CO ₂ equivalent	132.53	1.64	2.66	0.00	3.00	0.00	3.08	0.00	0.00	0.00	0.00	0.13	11.00	0.30	-50.00
GWP-b	kg CO ₂ equivalent	-0.41	-2.26E-02	4.28	0.00	1.36E-02	0.00	9.81E-02	0.00	0.00	0.00	0.00	-1.85E-03	0.15	-1.01E-02	-9.55E-02
GWP-I	kg CO ₂ equivalent	0.10	1.49E-02	6.67E-05	0.00	1.42E-03	0.00	2.98E-03	0.00	0.00	0.00	0.00	1.22E-03	5.61E-04	9.42E-04	-1.24E-02
ODP	kg CFC-11-eq.	7.21E-08	2.10E-13	1.04E-12	0.00	7.33E-10	0.00	1.80E-09	0.00	0.00	0.00	0.00	1.72E-14	8.36E-12	7.71E-13	-1.85E-10
AP	mol H ⁺ -eq.	0.66	1.96E-03	1.53E-03	0.00	1.28E-02	0.00	1.50E-02	0.00	0.00	0.00	0.00	1.55E-04	3.66E-03	2.15E-03	-0.21
EP-fw	kg P-eq.	4.85E-04	5.89E-06	3.02E-07	0.00	5.53E-06	0.00	1.17E-05	0.00	0.00	0.00	0.00	4.83E-07	2.20E-06	6.10E-07	-4.50E-05
EP-m	kg N-eq.	0.13	6.73E-04	5.26E-04	0.00	2.60E-03	0.00	3.00E-03	0.00	0.00	0.00	0.00	5.23E-05	1.34E-03	5.56E-04	-4.94E-02
EP-t	mol N-eq.	1.51	7.90E-03	6.95E-03	0.00	2.98E-02	0.00	3.40E-02	0.00	0.00	0.00	0.00	6.16E-04	1.65E-02	6.11E-03	-0.56
POCP ADPF* ²	kg NMVOC-eq.	0.41	1.72E-03	1.41E-03	4.43E-07	8.28E-03	0.00	9.28E-03	0.00	0.00	0.00	0.00	1.35E-04	3.60E-03	1.68E-03	-0.14
ADPF**	MJ	2249.90	21.90	2.52 9.33E-09	0.00	62.75 7.63E-07	0.00	47.66	0.00	0.00	0.00	0.00	1.80	15.10	4.03 1.40E-08	-703.00 -1.58E-05
WDP*2	kg Sb equivalent	3.78E-05	1.06E-07		0.00		0.00	6.69E-07 0.39	0.00	0.00	0.00	0.00	8.69E-09	7.72E-08		
WDP	m ³ world-eq. deprived	14.61	1.95E-02	0.79	0.00	0.33			0.00	0.00	0.00	0.00	1.59E-03	1.10	3.33E-02	-2.32
	1		4.00					anagement							1 4 70	
PERE	MJ	340.11	1.60	291.77	0.00	5.25	0.00	14.41	0.00	0.00	0.00	0.00	0.13	6.13	1.72	-88.50
PERM	MJ	293.41	0.00	-291.16	0.00	0.00	0.00	-3.66E-16	0.00	0.00	0.00	0.00	0.00	-1.18	-1.06	0.00
PERT	MJ	633.52	1.60	0.61	0.00	5.25	0.00	14.41	0.00	0.00	0.00	0.00	0.13	4.95	0.66	-88.50
PENRE	MJ MJ	2011.97	22.00	23.50	0.00	62.75	0.00	47.66	0.00	0.00	0.00	0.00	1.80	129.27	106.81	-705.00
PENRM	MJ	237.93 2249.90	0.00 22.00	-20.98 2.52	0.00	0.00 62.75	0.00	0.00 47.66	0.00	0.00	0.00	0.00	0.00	-114.17 15.10	-102.77 4.04	0.00 -705.00
SM		8.99	0.00	0.00	0.00	2.36E-02	0.00	0.22	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-705.00
RSF	kg MJ	0.00	0.00	0.00	0.00	5.53E-02	0.00	7.13E-22	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-0.20 -4.71E-21
NRSF	MJ	0.00	0.00	0.00	0.00	6.48E-21	0.00	8.38E-22	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-4.71E-21
FW	m ³	0.66	1.75E-03	1.86E-02	0.00	1.48E-02	0.00	1.62E-02	0.00	0.00	0.00	0.00	1.43E-04	2.72E-02	1.02E-03	-0.10
		0.00	1.752-03	1.002-02	0.00			of waste	0.00	0.00	0.00	0.00	1.432-04	2.720-02	1.022-03	-0.10
			0.005.44											0.005.40	0.005.44	4 405 04
HWD NHWD	kg	1.31E-05 33.69	6.82E-11 3.36E-03	5.28E-11 0.37	0.00	2.90E-08	0.00	-3.17E-06	0.00	0.00	0.00	0.00	5.59E-12 2.75E-04	-2.02E-10	8.80E-11	-1.40E-04
	kg				0.00	0.64	0.00	1.40	0.00	0.00	0.00	0.00		3.03	20.20	-7.35
RWD	kg	0.12	4.12E-05	1.14E-04	0.00	1.87E-03	0.00	2.69E-03	0.00	0.00	0.00	0.00	3.38E-06	8.48E-04	4.60E-05	-1.89E-02
							-	erial flows								
CRU	kg	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MFR	kg	11.67	0.00	0.00	0.00	0.82	0.00	0.72	0.00	0.00	0.00	0.00	0.00	17.20	0.00	0.00
MER	kg	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
EEE	MJ	5.83	0.00	11.30	0.00	5.15E-02	0.00	0.84	0.00	0.00	0.00	0.00	0.00	16.60	0.00	0.00
EET	MJ	13.70	0.00	20.30	0.00	9.20E-02	0.00	1.60	0.00	0.00	0.00	0.00	0.00	29.90	0.00	0.00
land use c EP-t - feut minerals& renewable primary er - hazardou	rophication potential - teri metals WDP* ² – Water primary energy resource nergy resources SM - u us waste disposed NHV	epletion po restrial F (user) dep s PENR ise of seco VD - non-h	POCP - pho privation pot E - use of r ondary mate	NP - acidifie tochemica ential P non-renewa erial RS vaste dispo	cation pote Il ozone fo ERE - Use able prima F - use of I osed RV	ential EP rmation po e of renewa ary energy renewable VD - radioa	P-fw - eutratential able prima PENRM secondar active was	ADPF* ² - at iry energy I - use of no y fuels N ite disposed	potential - piotic deple PERM - pn-renewa RSF - use	aquatic fre etion poter use of ren ble primar of non-ren	eshwater ntial – foss newable pri ry energy r	EP-m - e il resource mary ene esources econdary f	eutrophicati es ADPE rgy resourc PENRT	on potentia * ² - abiotic es PER · total use c - net use c	of fresh wate	narine otential – of wable er HWD

Publication date: 04.12.2023

ift					Res	ults per 1	m² Q4 do	uble plasti	c (PG 1)							
ROSENHEIM	Unit	A1-A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
					Addi	tional env	ironment	al impact ir	dicators							
PM	Disease incidence	6.28E-06	1.40E-08	1.05E-08	0.00	1.18E-07	0.00	1.38E-07	0.00	0.00	0.00	0.00	1.13E-09	4.47E-08	2.64E-08	-2.18E-06
IRP*1	kBq U235-eq.	17.96	6.14E-03	1.72E-02	0.00	0.30	0.00	0.41	0.00	0.00	0.00	0.00	5.04E-04	9.02E-02	5.31E-03	-2.52
ETP-fw*2	CTUe	2208.70	15.60	1.34	3.80E-06	47.00	0.00	52.12	0.00	0.00	0.00	0.00	1.28	8.85	2.20	-532.00
HTP-c*2	CTUh	1.60E-07	3.19E-10	7.55E-11	0.00	3.75E-09	0.00	3.03E-09	0.00	0.00	0.00	0.00	2.61E-11	3.85E-10	3.39E-10	-1.09E-07
HTP-nc*2	CTUh	1.62E-06	1.70E-08	5.26E-09	2.75E-14	4.18E-08	0.00	3.61E-08	0.00	0.00	0.00	0.00	1.39E-09	3.09E-08	3.73E-08	-5.36E-07
SQP*2	dimensionless	1139.07	9.17	0.67	0.00	1.18E-07	0.00	27.94	0.00	0.00	0.00	0.00	0.75	4.01	0.98	-55.20
	culate matter emissions po HTP-nc* ² - Human toxicity				ition poten SQP* ² -				² - Ecotoxio	city potenti	al – freshv	vater H	ITP-c *² - Hu	uman toxic	ity potentia	al – cancer

Disclaimers:

*1 This impact category deals mainly with the eventual impact of low dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, from radon and from some construction materials is also not measured by this indicator.

*2 The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experience with the indicator.

 Table 7 Overall results table Q4 double plastic (PG 1)

GWP-t	Unit	A1-A3	A4	A5	B1	B2	B3	riple plasti B4	B5	B6	B7	C1	C2	C3	C4	D
WP-t	Onit	A1-A3	714	7.5	51		Core indi			50	5,	01	02	05	04	
	kg CO ₂ equivalent	167.80	2.47	15.10	0.00	3.30	0.00	4.18	0.00	0.00	0.00	0.00	0.16	11.30	0.39	-60.50
WP-f	kg CO ₂ equivalent	183.49	2.48	5.79	0.00	3.28	0.00	4.34	0.00	0.00	0.00	0.00	0.16	11.10	0.39	-60.40
WP-b	kg CO ₂ equivalent	-16.21	-3.43E-02	9.30	0.00	1.44E-02	0.00	-0.17	0.00	0.00	0.00	0.00	-2.26E-03	0.15	-1.32E-02	-0.12
WP-I	kg CO ₂ equivalent	0.18	2.26E-02	1.45E-04	0.00	1.63E-03	0.00	4.93E-03	0.00	0.00	0.00	0.00	1.49E-03	5.83E-04	1.24E-03	-1.61E-0
DP	kg CFC-11-eq.	1.17E-07	3.18E-13	2.25E-12	0.00	7.90E-10	0.00	2.92E-09	0.00	0.00	0.00	0.00	2.09E-14	8.54E-12	1.01E-12	-2.16E-1
P	mol H ⁺ -eq.	0.98	2.98E-03	3.32E-03	0.00	1.61E-02	0.00	2.27E-02	0.00	0.00	0.00	0.00	1.89E-04	3.48E-03	2.82E-03	-0.30
P-fw	kg P-eq.	1.05E-03	8.93E-06	6.57E-07	0.00	5.98E-06	0.00	2.57E-05	0.00	0.00	0.00	0.00	5.88E-07	2.26E-06	8.01E-07	-5.69E-0
P-m	kg N-eq.	0.21	1.02E-03	1.15E-03	0.00	3.23E-03	0.00	4.77E-03	0.00	0.00	0.00	0.00	6.37E-05	1.23E-03	7.29E-04	-6.68E-0
P-t	mol N-eq.	2.32	1.20E-02	1.51E-02	0.00	3.70E-02	0.00	5.36E-02	0.00	0.00	0.00	0.00	7.51E-04	1.53E-02	8.02E-03	-0.76
OCP	kg NMVOC-eq.	0.61	2.61E-03	3.07E-03	4.43E-07	9.98E-03	0.00	1.41E-02	0.00	0.00	0.00	0.00	1.65E-04	3.34E-03	2.20E-03	-0.18
DPF*2	MJ	3076.30	33.30	5.49	0.00	67.75	0.00	66.62	0.00	0.00	0.00	0.00	2.19	15.40	5.30	-881.00
	kg Sb equivalent	5.15E-05	1.61E-07	2.03E-08	0.00	8.98E-07	0.00	9.65E-07	0.00	0.00	0.00	0.00	1.06E-08	7.87E-08	1.83E-08	-2.00E-0
VDP*2	m ³ world-eq. deprived	21.27	2.95E-02	1.71	0.00	0.37	0.00	0.57	0.00	0.00	0.00	0.00	1.94E-03	1.11	4.37E-02	-3.27
								nagement								
ERE	MJ	721.46	2.42	3.57	0.00	5.63	0.00	32.00	0.00	0.00	0.00	0.00	0.16	315.42	323.94	-113.00
ERM	MJ	635.70	0.00	-2.25	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-310.38	-323.08	0.00
PERT	MJ MJ	1357.16 2809.44	2.42 33.40	1.32 226.80	0.00	5.63 67.75	0.00	32.00 66.63	0.00	0.00	0.00	0.00 0.00	0.16	5.04 37.77	0.86 28.58	-113.00 -883.00
	MJ	2809.44	0.00	-226.80	0.00	0.00	0.00	8.88E-16	0.00	0.00	0.00	0.00	0.00	-22.37	-23.28	-883.00
PENRT	MJ	3076.40	33.40	5.49	0.00	67.75	0.00	66.63	0.00	0.00	0.00	0.00	2.20	-22.37	5.30	-883.00
SM SM	kg	9.86	0.00	0.00	0.00	3.25E-02	0.00	0.25	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-0.38
RSF	MJ	0.00	0.00	0.00	0.00	7.65E-22	0.00	1.11E-21	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-9.16E-2
NRSF	MJ	0.00	0.00	0.00	0.00	9.00E-21	0.00	1.30E-20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-1.08E-1
W	m ³	0.97	2.65E-03	4.04E-02	0.00	1.59E-02	0.00	2.40E-02	0.00	0.00	0.00	0.00	1.75E-04	2.74E-02	1.34E-03	-0.14
			•			Ca	ategories	of waste								
IWD	kg	1.46E-05	1.03E-10	1.15E-10	0.00	3.68E-08	0.00	-3.16E-06	0.00	0.00	0.00	0.00	6.81E-12	-2.11E-10	1.15E-10	-1.41E-0
NHWD	kg	51.36	5.09E-03	0.80	0.00	0.88	0.00	2.01	0.00	0.00	0.00	0.00	3.35E-04	3.15	26.50	-12.60
RWD	kg	0.17	6.25E-05	2.48E-04	0.00	2.02E-03	0.00	3.68E-03	0.00	0.00	0.00	0.00	4.12E-06	8.58E-04	6.03E-05	-2.46E-0
	5					Ou	tput mate	erial flows								
RU	kg	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MFR	kg	23.05	0.00	0.00	0.00	1.04	0.00	1.08	0.00	0.00	0.00	0.00	0.00	20.20	0.00	0.00
MER	kg	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
EEE	MJ	12.70	0.00	24.50	0.00	6.05E-02	0.00	1.35	0.00	0.00	0.00	0.00	0.00	16.60	0.00	0.00
CCC	MJ	29.70	0.00	44.20	0.00	0.11	0.00	2.60	0.00	0.00	0.00	0.00	0.00	30.00	0.00	0.00

Publication date: 04.12.2023

ift					Re	sults per '	l m² Q4 tr	iple plastic	(PG 2)							
ROSENHEIM	Unit	A1-A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
					Addi	tional env	ironment	al impact in	dicators							
PM	Disease incidence	9.59E-06	2.12E-08	2.28E-08	0.00	1.48E-07	0.00	2.18E-07	0.00	0.00	0.00	0.00	1.37E-09	4.56E-08	3.47E-08	-2.93E-06
IRP*1	kBq U235-eq.	23.50	9.32E-03	3.75E-02	0.00	0.32	0.00	0.53	0.00	0.00	0.00	0.00	6.14E-04	9.13E-02	6.96E-03	-3.20
ETP-fw*2	CTUe	3701.90	23.60	2.92	3.80E-06	58.25	0.00	88.75	0.00	0.00	0.00	0.00	1.56	9.12	2.89	-806.00
HTP-c*2	CTUh	2.32E-07	4.84E-10	1.64E-10	0.00	5.13E-09	0.00	4.31E-09	0.00	0.00	0.00	0.00	3.19E-11	3.95E-10	4.45E-10	-1.62E-07
HTP-nc*2	CTUh	2.38E-06	2.58E-08	1.14E-08	2.75E-14	4.50E-08	0.00	5.48E-08	0.00	0.00	0.00	0.00	1.70E-09	3.20E-08	4.89E-08	-6.31E-07
SQP*2	dimensionless	4115.50	13.90	1.46	0.00	5.05	0.00	102.18	0.00	0.00	0.00	0.00	0.92	4.09	1.29	-71.20
	culate matter emissions po I TP-nc* ² - Human toxicity					tial – huma soil quality			² - Ecotoxic	city potenti	al – freshv	vater H	I TP-c *² - Hւ	uman toxic	ity potentia	al – cancer

Disclaimers:

*1 This impact category deals mainly with the eventual impact of low dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, from radon and from some construction materials is also not measured by this indicator.

*2 The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experience with the indicator.

 Table 8 Overall results table Q4 triple plastic (PG 2)

	Unit	A1-A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
IO2ENHEIM							Core indi									
GWP-t	kg CO ₂ equivalent	192.17	2.06	6.01	0.00	4.45	0.00	4.60	0.00	0.00	0.00	0.00	0.19	12.10	0.48	-63.60
SWP-f	kg CO ₂ equivalent	192.07	2.07	2.31	0.00	4.43	0.00	4.51	0.00	0.00	0.00	0.00	0.19	12.00	0.49	-63.40
SWP-b	kg CO ₂ equivalent	0.11	-2.86E-02	3.71	0.00	2.25E-02	0.00	9.63E-02	0.00	0.00	0.00	0.00	-2.68E-03	0.15	-1.63E-02	-0.13
GWP-I	kg CO ₂ equivalent	0.16	1.89E-02	5.78E-05	0.00	2.83E-03	0.00	4.56E-03	0.00	0.00	0.00	0.00	1.77E-03	5.97E-04	1.53E-03	-1.44E-02
DDP	kg CFC-11-eq.	1.55E-07	2.65E-13	8.98E-13	0.00	1.76E-09	0.00	3.88E-09	0.00	0.00	0.00	0.00	2.48E-14	8.68E-12	1.25E-12	-2.18E-10
۱P	mol H+-eq.	1.07	2.48E-03	1.32E-03	0.00	2.29E-02	0.00	2.48E-02	0.00	0.00	0.00	0.00	2.25E-04	3.57E-03	3.49E-03	-0.29
EP-fw	kg P-eq.	6.55E-04	7.45E-06	2.62E-07	0.00	9.88E-06	0.00	1.60E-05	0.00	0.00	0.00	0.00	6.98E-07	2.30E-06	9.90E-07	-5.34E-05
EP-m	kg N-eq.	0.21	8.52E-04	4.56E-04	0.00	4.45E-03	0.00	4.70E-03	0.00	0.00	0.00	0.00	7.56E-05	1.26E-03	9.01E-04	-7.14E-02
EP-t	mol N-eq.	2.36	1.00E-02	6.02E-03	0.00	5.10E-02	0.00	5.39E-02	0.00	0.00	0.00	0.00	8.91E-04	1.58E-02	9.92E-03	-0.81
POCP	kg NMVOC-eq.	0.62	2.18E-03	1.22E-03	4.43E-07	1.35E-02	0.00	1.42E-02	0.00	0.00	0.00	0.00	1.96E-04	3.41E-03	2.72E-03	-0.18
ADPF*2	MJ	3340.10	27.80	2.19	0.00	88.00	0.00	73.68	0.00	0.00	0.00	0.00	2.60	15.80	6.55	-899.00
	kg Sb equivalent	5.77E-05	1.34E-07	8.09E-09	0.00	1.25E-06	0.00	1.12E-06	0.00	0.00	0.00	0.00	1.26E-08	8.00E-08	2.27E-08	-1.93E-05
VDP*2	m ³ world-eq. deprived	24.67	2.46E-02	0.68	0.00	0.58	0.00	0.63	0.00	0.00	0.00	0.00	2.31E-03	1.18	5.40E-02	-3.00
								anagement								
PERE	MJ	583.46	2.02	2.77	0.00	10.75	0.00	19.37	0.00	0.00	0.00	0.00	0.19	123.36	135.18	-109.00
PERM	MJ	254.59	0.00	-2.25	0.00	0.00	0.00	7.11E-16	0.00	0.00	0.00	0.00	0.00	-118.24	-134.11	0.00
PERT	MJ	838.05	2.02	0.53	0.00	10.75	0.00	19.37	0.00	0.00	0.00	0.00	0.19	5.12	1.07	-109.00
PENRE	MJ	3089.97	27.90	234.14	0.00	88.00	0.00	73.68	0.00	0.00	0.00	0.00	2.61	24.32	16.21	-900.00
PENRM	MJ	250.13	0.00	-231.95	0.00	0.00	0.00	-4.44E-16	0.00	0.00	0.00	0.00	0.00	-8.52	-9.66	0.00
PENRT SM	MJ	3340.10	27.90	2.19 0.00	0.00	88.00 4.45E-02	0.00	73.68 0.22	0.00	0.00	0.00	0.00	2.61	15.80 0.00	6.55 0.00	-900.00 -0.18
	kg	8.91	0.00	0.00	0.00	4.45E-02 1.04E-21	0.00	0.22 1.18E-21	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-0.18 -4.32E-21
RSF NRSF	MJ MJ	4.71E-20 5.53E-19	0.00	0.00	0.00	1.04E-21 1.22E-20	0.00	1.38E-20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-4.32E-21
W	m ³	1.05	2.21E-03	1.61E-02	0.00	2.38E-02	0.00	2.57E-02	0.00	0.00	0.00	0.00	2.07E-04	2.91E-02	1.65E-03	-0.13
-	111-	1.05	2.212-03	1.012-02	0.00			of waste	0.00	0.00	0.00	0.00	2.072-04	2.912-02	1.052-05	-0.13
IWD	l ka	4 405 05	0.005.44	4.575.44	0.00	5.35E-08			0.00	0.00	0.00	0.00	0.005.40	0.005.40	4 495 40	
	kg	1.40E-05 55.17	8.63E-11 4.25E-03	4.57E-11 0.32	0.00	5.35E-08 1.19	0.00	-3.40E-06 2.25	0.00	0.00	0.00	0.00	8.08E-12 3.98E-04	-2.08E-10 3.23	1.43E-10 32.80	-1.50E-04 -8.58
RWD	kg	0.22	4.25E-03 5.22E-05	9.89E-05	0.00	4.25E-03	0.00	5.11E-03	0.00	0.00	0.00	0.00	3.98E-04 4.89E-06	3.23 8.70E-04	7.46E-05	-8.56 -2.40E-02
	kg	0.22	J.22L-0J	9.892-05	0.00			erial flows	0.00	0.00	0.00	0.00	4.092-00	0.70L-04	7.40∟-03	-2.40L-02
RU	ka	0.00	0.00	0.00	0.00				0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MFR	kg	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00 23.30	0.00	0.00
MER	kg kg	0.00	0.00	0.00	0.00	0.00	0.00	0.91	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
EEE	MJ	5.05	0.00	9.77	0.00	6.05E-02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	17.80	0.00	0.00
EET	MJ	11.80	0.00	17.60	0.00	0.032-02	0.00	1.54	0.00	0.00	0.00	0.00	0.00	32.20	0.00	0.00
Key:			0.00		0.00	0	0.00		0.00	0.00	0.00	0.00	0.00	02.20	0.00	0.00
	- Blobal warming potential	- total	WP-f – glo	hal warmii	na notentis	n fossil fue	Is GW	P-b – globa	Iwarming	notential -	hiogenic	GWP-I	– dlobal wa	armina note	ential - land	use and
and use c															l - aquatic r	
	rophication potential - ter														depletion p	
ninerals&	• • •															
	primary energy resource															
and wable	primary energy resource	J PENK	L - use UII	ICH - CHEW	avie prind			- use ui iii	n-ieilewa	ne hiiigi	y chergy l	COULCES		10101 438 6		wanic

materials for energy recovery **EEE** - exported electrical energy **EET** - exported thermal energy

ift					Resu	ults per 1 i	m² Q4 acc	oustic plasti	ic (PG 3)							
ROSENHEIM	Unit	A1-A3	A4	A5	B1	B2	B3	B4	B5	B 6	B7	C1	C2	C3	C4	D
					Addi	tional env	ironment	al impact in	dicators							
PM																
IRP*1	kBq U235-eq.	34.10	7.78E-03	1.49E-02	0.00	0.69	0.00	0.80	0.00	0.00	0.00	0.00	7.29E-04	9.30E-02	8.61E-03	-3.36
ETP-fw*2																
HTP-c*2	CTUh	2.25E-07	4.04E-10	6.54E-11	0.00	5.30E-09	0.00	4.27E-09	0.00	0.00	0.00	0.00	3.78E-11	4.06E-10	5.50E-10	-1.47E-07
HTP-nc* ²	CTUh	2.47E-06	2.16E-08	4.56E-09	2.75E-14	5.35E-08	0.00	5.68E-08	0.00	0.00	0.00	0.00	2.02E-09	3.27E-08	6.05E-08	-6.73E-07
SQP*2	dimensionless	1225.90	11.60	0.58	0.00	9.28	0.00	30.11	0.00	0.00	0.00	0.00	1.09	4.18	1.59	-68.70
	culate matter emissions po I TP-nc^{*2} - Human toxicity					tial – huma soil quality			² - Ecotoxic	city potenti	al – freshv	vater H	TP-c *² - Hւ	uman toxic	ity potentia	al – cancer

Disclaimers:

*1 This impact category deals mainly with the eventual impact of low dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, from radon and from some construction materials is also not measured by this indicator.

*2 The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experience with the indicator.

 Table 9 Overall results table Q4 acoustic plastic (PG 3)

 Declaration code EPD-RQK-GB-76.0
 Publication date: 04.12.2023

 Addition: Overall results table for drive units and (electrical) components for (optional) drive-controlled window variants with designation code E_, EF, SF:

ift		F	Results for	drive uni	ts and (ele	ectrical) co	mpone	ents used p	per 1 m²	Windows of	f the mod	el series (Q4			
ROSENHEIM	Unit	A1-A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
							Core i	ndicators								
GWP-t	kg CO ₂ equivalent	12.01	6.28E-02	0.00	0.00	5.40E-03	0.00	0.20	0.00	0.38	0.00	0.00	7.46E-03	0.74	1.04E-02	-5.05
GWP-f	kg CO ₂ equivalent	12.31	6.31E-02	0.00	0.00	6.20E-03	0.00	0.20	0.00	0.37	0.00	0.00	7.50E-03	0.58	1.07E-02	-5.06
GWP-b	kg CO ₂ equivalent	-0.27	-8.72E-04	0.00	0.00	-8.25E-04	0.00	-2.69E-03	0.00	3.95E-03	0.00	0.00	-1.04E-04	0.16	-3.55E-04	1.79E-02
GWP-I	kg CO ₂ equivalent	1.69E-02	5.75E-04	0.00	0.00	4.38E-06	0.00	2.89E-04	0.00	4.18E-05	0.00	0.00	6.84E-05	2.03E-05	3.32E-05	-6.17E-03
ODP	kg CFC-11-eq.	1.59E-09	8.08E-15	0.00	0.00	3.35E-11	0.00	2.43E-11	0.00	7.70E-12	0.00	0.00	9.61E-16	3.23E-12	2.72E-14	-1.42E-09
AP	mol H⁺-eq.	6.41E-02	7.57E-05	0.00	0.00	2.23E-05	0.00	9.98E-04	0.00	1.18E-03	0.00	0.00	8.70E-06	6.51E-04	7.58E-05	-2.55E-02
EP-fw	kg P-eq.	1.87	2.27E-07	0.00	0.00	4.08E-02	0.00	2.84E-02	0.00	1.58E-06	0.00	0.00	2.70E-08	6.70E-07	2.15E-08	-1.71
EP-m	kg N-eq.	9.33E-03	2.60E-05	0.00	0.00	4.05E-06	0.00	1.48E-04	0.00	2.04E-04	0.00	0.00	2.93E-06	1.37E-04	1.96E-05	-3.69E-03
EP-t	mol N-eq.	9.85E-02	3.05E-04	0.00	0.00	4.33E-05	0.00	1.57E-03	0.00	2.14E-03	0.00	0.00	3.45E-05	1.67E-03	2.15E-04	-3.90E-02
POCP	kg NMVOC-eq.	2.81E-02	6.63E-05	0.00	0.00	1.20E-05	0.00	4.50E-04	0.00	5.60E-04	0.00	0.00	7.58E-06	3.70E-04	5.91E-05	-1.09E-02
ADPF*2	MJ	159.43	0.85	0.00	0.00	9.53E-02	0.00	2.55	0.00	7.85	0.00	0.00	0.10	3.36	0.14	-64.20
ADPE*2	kg Sb equivalent	1.12E-03	4.09E-09	0.00	0.00	5.83E-07	0.00	1.63E-05	0.00	7.60E-08	0.00	0.00	4.87E-10	3.17E-08	4.92E-10	-4.81E-04
WDP*2	m ³ world-eq. deprived	2.97	7.50E-04	0.00	0.00	5.30E-06	0.00	4.91E-02	0.00	7.20E-02	0.00	0.00	8.93E-05	9.28E-02	1.17E-03	-1.10
						Re	source	managem	ent							
PERE	MJ	50.74	6.16E-02	0.00	0.00	2.95E-02	0.00	0.93	0.00	5.40	0.00	0.00	7.32E-03	4.08	0.64	-19.10
PERM	MJ	2.46	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-1.84	-0.61	0.00
PERT	MJ	53.20	6.16E-02	0.00	0.00	2.95E-02	0.00	0.93	0.00	5.40	0.00	0.00	7.32E-03	2.24	2.32E-02	-19.10
PENRE	MJ	154.40	0.85	0.00	0.00	9.55E-02	0.00	2.55	0.00	7.85	0.00	0.00	0.10	7.13	1.40	-64.20
PENRM	MJ	5.03	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-3.77	-1.26	0.00
PENRT	MJ	159.43	0.85	0.00	0.00	9.55E-02	0.00	2.55	0.00	7.85	0.00	0.00	0.10	3.36	0.14	-64.20
SM	kg	0.28	0.00	0.00	0.00	0.00	0.00	6.95E-03	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
RSF	MJ	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
NRSF	MJ	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
FW	m³	0.11	6.74E-05	0.00	0.00	1.87E-07	0.00	1.82E-03	0.00	2.38E-03	0.00	0.00	8.02E-06	2.46E-03	3.59E-05	-3.79E-02
						С	ategori	ies of wast	e							
HWD	kg	9.23E-06	2.63E-12	0.00	0.00	1.36E-10	0.00	1.42E-07	0.00	-7.40E-10	0.00	0.00	3.13E-13	-2.98E-10	3.10E-12	-3.53E-06
NHWD	kg	1.65	1.29E-04	0.00	0.00	3.78E-03	0.00	4.31E-02	0.00	7.08E-03	0.00	0.00	1.54E-05	1.70E-02	0.71	-0.68
RWD	kg	5.24E-03	1.59E-06	0.00	0.00	5.50E-06	0.00	7.81E-05	0.00	1.24E-03	0.00	0.00	1.89E-07	5.09E-04	1.62E-06	-2.77E-03
	U					Oı	utput m	aterial flow	vs							
CRU	kg	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MFR	kg	8.24E-03	0.00	0.00	0.00	1.93E-02	0.00	3.44E-02	0.00	0.00	0.00	0.00	0.00	1.37	0.00	-7.53E-03
MER	kg	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
EEE	MJ	0.00	0.00	0.00	0.00	0.00	0.00	2.39E-02	0.00	0.00	0.00	0.00	0.00	0.96	0.00	0.00
EET	MJ	0.00	0.00	0.00	0.00	0.00	0.00	5.20E-02	0.00	0.00	0.00	0.00	0.00	2.08	0.00	0.00
land use of EP-t - feu minerals& renewable	trophication potential - te metals WDP* ² – Wate primary energy resource	e depletion errestrial er (user) de ces PEN	POCP - ph privation po RE - use of	AP - acidi notochemic otential	fication po cal ozone f PERE - Us wable prim	tential El ormation po se of renew ary energy	P-fw - e otential able pri PEN	utrophicatio ADPF* ² mary energ RM - use o	on potent - abiotic jy PEF f non-rer	depletion po RM - use of r newable prim	freshwate tential – fo enewable nary energ	r EP-m ossil resou primary e y resource	rces ADP nergy resour es PENRT	tion potentia E ^{*2} - abiotic ces PER - total use c	I - aquatic n depletion po f - total use of non-renev	narine otential – of vable
- hazardo		HWD - non-		waste disp	bosed R	WD - radio	active v	vaste dispo					y fuels FW IFR - materia			

Page 22

ift		Res	ults for dr	ive units	and (elec	trical) con	nponents	used per	1 m² Win	dows of th	e model s	series Q4	l -			
ROSENHEIM	Unit	A1-A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
					Addi	tional env	ironment	al impact	indicator	s						
PM																
IRP*1	RP ^{±1} kBq U235-eq. 0.79 2.37E-04 0.00 0.00 9.33E-04 0.00 1.02E-02 0.00 0.12 0.00 0.00 2.82E-05 4.78E-02 1.87E-04 -0.45															
ETP-fw ^{*2}	TP-fw*2 CTUe 88.73 0.60 0.00 3.10E-04 0.00 1.49 0.00 3.18 0.00 0.00 7.15E-02 1.36 7.76E-02 -31.20															
HTP-c*2	CTUh	7.89E-08	1.23E-11	0.00	0.00	1.47E-12	0.00	1.10E-09	0.00	1.39E-10	0.00	0.00	1.46E-12	6.25E-11	1.19E-11	-3.51E-08
HTP-nc* ²	CTUh	2.77E-07	6.56E-10	0.00	0.00	5.65E-11	0.00	4.49E-09	0.00	2.93E-09	0.00	0.00	7.80E-11	1.52E-09	1.31E-09	-1.02E-07
SQP*2	dimensionless	68.41	0.35	0.00	0.00	4.33E-02	0.00	1.43	0.00	3.55	0.00	0.00	4.21E-02	1.50	3.45E-02	-14.30
	culate matter emissions po I TP-nc* ² - Human toxicity		RP *1 – ioni non-cance						* ² - Ecoto	xicity poten	tial – fresł	nwater	HTP-c* ² -	Human to	xicity poter	itial – cancer

Disclaimers:

*1 This impact category deals mainly with the eventual impact of low dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, from radon and from some construction materials is also not measured by this indicator.

*2 The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experience with the indicator.

Table 10 Overall results table for drive units and (electrical) components across all life cycle phases - model series Q4

The results presented serve as an initial orientation for estimating the additional environmental impacts of drive-controlled window variants. The environmental impact of installed drive units is based on M-EPD-AZR-103. Purchased electrical components were recognized exclusively through the cost of materials.

Optional drive units are installed for all window variants with designation code E_, EF or SF. For these, the values of the determined environmental impacts from Table 10 must be added. Solar and line-operated drive units are installed (see legend under Table 1). The worst case was determined in a preliminary study (for model series Q4: drive variant solar radio "SF", see background report, Section 3.3.2), so the environmental impacts from Table 10 cover all named drive variants. The drives and other electrical components and other components associated with the drive unit were included in the balance.

Page 24

6.4 Interpretation, LCA presentation and critical review

Evaluation

The environmental impacts of

- Q4 double wood (PG 1)
- Q4 triple wood (PG 2)
- Q4 acoustic wood (PG 3)
- Drive unit Q4 (worst case: drive variant solar radio "SF")

differ considerably from each other. The differences lie primarily in the varying use of flat and laminated safety glass and the energy used for production. However, the effect of the various pre-products and raw materials used and their different weights should not be neglected, nor should the resulting significant differences in product weight.

In the area of production, the environmental impact of all roof windows results primarily from the use of laminated safety glass (LSG) and its upstream chains. In addition, the quantity of flat glass used, followed by externally sourced electricity, has a significant impact on the environment. Further marginal shares are attributable to the steel used in the hardware and their respective upstream chains.

For drive units and (electrical) components in the case of drive-controlled window variants, built-in circuit boards and the copper and aluminum used are particularly important drivers. Here, even small differences in mass result in significant deviations in the environmental impact.

Furthermore, cleaning processes with a glass cleaner containing isopropanol and ethanol during the 50-year use phase are relevant in terms of environmental impact. Other significant values in the utilisation phase come from the repair of worn parts. For all products, this is in particular the replacement of laminated safety glass, followed by flat glass and hardware.

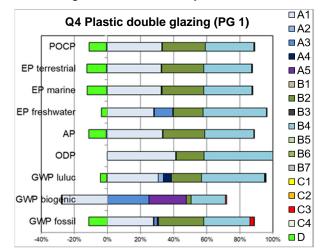
The one-off replacement of windows over a period of 50 years also plays an important role.

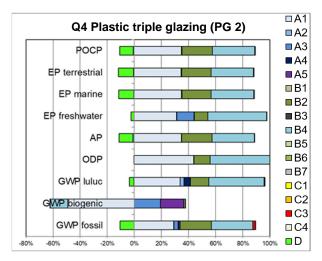
In scenario C4, only marginal expenditures for the physical pretreatment and the landfill operation are to be expected.

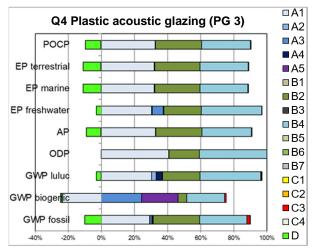
In the disposal phase, glass recycling (downcycling to container glass) can be credited with around 1% of the life cycle environmental impacts of the core indicators without WDP in scenario D. In addition, around 1% is accounted for by PVC recycling and between 1% and 2% by steel recycling, depending on the product.

The charts below show the allocation of the main environmental impacts.

The values obtained from the LCA calculation are suitable for the certification of buildings.


Product group Roof windows




ROSENHEIM

Diagrams

The diagrams below show the B modules with reference to the specified RSL within the building service life of 50 years.

Page 26

Product group Roof windows

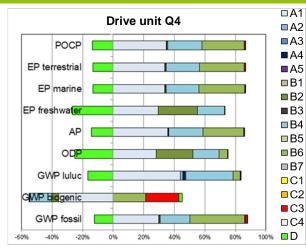


Illustration 4 Percentage of the modules in selected environmental impact indicators

Report The LCA report underlying this EPD was developed according to the requirements of DIN EN ISO 14040 and DIN EN ISO 14044 as well as DIN EN 15804 and DIN EN ISO 14025. It is deposited with ift Rosenheim. The results and conclusions reported to the target group are complete, correct, without bias and transparent. The results of the study are not designed to be used for comparative statements intended for publication.

Critical review The critical review of the LCA and the report took place in the course of verification of the EPD and was carried out by the external verifier Susanne Volz, M.Sc. (Graduate Business Lawyer).

7 General information regarding the EPD

Comparability This EPD was prepared in accordance with DIN EN 15804 and is therefore only comparable to those EPDs that also comply with the requirements set out in DIN EN 15804. Any comparison must refer to the building context and the same boundary conditions of the various life cycle stages. For comparing EPDs of construction products, the rules set out in DIN EN 15804, Clause 5.3, apply. The detailed individual results of the products were summarised on the basis of conservative assumptions and differ from the average results. Identification of the product groups and the resulting variations are documented in the background report. Communication The communications format of this EPD meets the requirements of EN 15942:2012 and is therefore the basis for B2B communication. Only the nomenclature has been changed according to DIN EN 15804.

Product group Roof windows

Page 27

Verification Verification of the Environmental Product Declaration is documented in accordance with the ift "Richtlinie zur Erstellung von Typ III Umweltproduktdeklarationen" (Guidance on preparing Type III Environmental Product Declarations) in accordance with the requirements set out in DIN EN ISO 14025. This Declaration is based on the PCR documents "PCR Part A" PCR-A-0.3:2018 and "Windows, flat roof windows, rooflights and light bands" PCR-FE-3.0:2023 as well as EN 17213 "PCR for Windows and Doors." The European standard EN 15804 serves as the core PCR a) Independent verification of the declaration and statement according to EN ISO 14025:2010 Independent third party verifier: b) Susanne Volz ^{a)} Product category rules ^{b)} Optional for business-to-business communication Mandatory for business-to-consumer communication (see EN ISO 14025:2010, 9.4).

Revisions of this document

No.	Date	Note	Person in	Verifier
			charge	
1	04.12.2023	External verification	Pscherer	Volz
2	15.01.2024	Formal adjustments	Pscherer	-

Publication date: 04.12.2023

8 Bibliography

1. **PCR Part A.** *Product category rules for environmental product declarations as per EN ISO 14025 and EN 15804.* Rosenheim: ift Rosenheim, 2018.

2. **Klöpffer, W und Grahl, B.** *Ökobilanzen (LCA).* Weinheim: Wiley-VCH-Verlag, 2009.

3. Eyerer, P. und Reinhardt, H.-W. Ökologische Bilanzierung von Baustoffen und Gebäuden - Wege zu einer ganzheitlichen Bilanzierung. (LCA of building materials and buildings -Routes to integrated LCA). Basel: Birkhäuser Verlag, 2000.

4. Gefahrstoffverordnung - GefStoffV. (Hazardous substances regulation). Verordnung zum Schutz vor Gefahrstoffen (Regulation on protection against hazardous substances). Berlin: BGBI. (Federal Gazette) I S. 3758, 2017.

5. Chemikalien-Verbotsverordnung - ChemVerbotsV. (Chemicals Prohibition Regulation). Verordnung über Verbote und Beschränkungen des Inverkehrbringens gefährlicher Stoffe, Zubereitungen und Erzeugnisse Chemikaliengesetz (Regulation on bans and restrictions of the placing on the market of hazardous substances, formulations and products covered by the Chemicals Law). Berlin: BGBI. (Federal Gazette) I S. 1328, 2017.

6. **DIN EN ISO 14040:2018-05.** *Environmental management - Life cycle assessment - Principles and framework.* Berlin: Beuth Verlag GmbH, 2018.

7. **DIN EN ISO 14044:2006-10.** *Environmental management - Life cycle assessment - Requirements and guidelines.* Berlin: Beuth Verlag GmbH, 2006.

8. EN ISO 14025:2011-10. Environmental labels and declarations - Type III environmental declarations - Principles and procedures. Berlin: Beuth Verlag GmbH, 2011.

9. **OENORM S 5200:2009-04-01.** *Radioactivity in construction materials.* Berlin: Beuth Verlag GmbH, 2009.

10. PCR Part B - Windows, flat roof windows, rooflights and light bands. Product category rules for environmental product declarations as per EN ISO 14025 and EN 15804. Rosenheim: ift Rosenheim, 2018.

11. **EN 15942:2012-01.** Sustainability of construction works -Environmental product declarations - Communication format business-to-business. Berlin: Beuth Verlag GmbH, 2012.

12. Bundesministerium für Umwelt, Naturschutz, Bau und Reaktorsicherheit (Federal Ministry for the Environment, Nature Conservation and Nuclear Safety). Leitfaden Nachhaltiges Bauen (Guidance on Sustainable Building). Berlin: s.n., 2016.

13. **DIN EN 13501-1:2010-01.** *Fire classification of construction products and building elements - Part 1: Classification using data from reaction to fire tests.* Berlin: Beuth Verlag GmbH, 2010.

14. **ISO 21930:2017-07.** Sustainability in building construction - Environmental declaration of building products. Berlin: Beuth Verlag, 2017.

15. Bundesimmissionsschutzgesetz - BlmSchG. (Federal Immission Law). Gesetz zum Schutz vor schädlichen Umwelteinwirkungen durch Luftverunreinigungen, Geräusche, Erschütterungen und ähnlichen Vorgängen (Law on harmful environmental impacts by air contamination, noise, vibrations and similar processes). Berlin: BGBI. (Federal Gazette) I S. 3830, 2017.

16. Chemikaliengesetz – ChemG (Chemicals Act). Law on protection against hazardous substances - Subdivided into

Page 28

Chemicals Law and a series of regulations; of relevance here: Law on protection against hazardous substances. Berlin: BGBI. (Federal Gazette) I S. 1146, 2017.

17. **IKP Universität Stuttgart and PE Europe GmbH.** *GaBi* 8: Software and database for LCA. Leinfelden-Echterdingen: s.n., 2017.

18. **DIN EN 16034:2014-12.** Pedestrian doorsets, industrial, commercial, garage doors and openable windows - Product standard, performance characteristics - Fire resistance and/or smoke control characteristics. Berlin: Beuth Verlag GmbH, 2014.

19. **DIN EN 14351-2:2019-01.** Windows and doors – Product standard, performance characteristics – Part 2: Internal pedestrian doorsets without resistance to fire and/or smoke leakage characteristics. Berlin: Beuth Verlag GmbH, 2019.

20. **DIN EN 14351-1:2016-12.** Windows and doors – Product standard, performance characteristics – Part 1: Windows and external pedestrian doorsets without resistance to fire and/or smoke leakage characteristics. Berlin: Beuth Verlag GmbH, 2016.

21. **Research project.** "EPDs für transparente Bauelemente" (EPDs for transparent building components) - Final report. Rosenheim: ift Rosenheim GmbH, 2011. SF-10.08.18.7-09.21/II 3-F20-09-1-067.

22. **DIN EN ISO 12457- Parts 1-4 :2003-01.** *Characterization of waste - Leaching; Compliance test for leaching of granular waste materials and sludges - Part 1-4:* Berlin: Beuth Verlag GmbH, 2003.

23. **DIN EN 12457 - Parts 1-4:2003-01.** *Characterization of waste - Leaching; Compliance test for leaching of granular waste materials and sludges - Part 1-4:* Berlin: Beuth Verlag GmbH, 2003.

24. Federal Environmental Agency. *TEXTS* 151/2021 -Promoting high-quality recycling of plastic waste from demolition waste and strengthening the use of recycled materials in construction products in line with the European Plastics Strategy. Dessau-Roßlau: Federal Environmental Agency, 2021. Vol. ISSN 1862-4804.

25. **ift Rosenheim GmbH.** Conditions and Guidance for the Use of ift Test Documents. Rosenheim: s.n., 2016.

26. **DIN EN 15804:2012+A2:2019+AC:2021.** Sustainability of construction works - Environmental product declarations - Core rules for the product category of construction products: Berlin: Beuth Verlag GmbH, 2022.

27. **DIN EN ISO 16000 Parts 6, 9, 11.** Indoor air: Determination of the emission of volatile organic compounds from building products and furnishing. Berlin: Beuth Verlag GmbH, 2012, 2008, 2006.

28. ift-Guideline NA-01/4. *General guideline for preparation of Type III Environmental Product Declarations* Rosenheim: ift Rosenheim GmbH, 2023.

29. **EN 17213:2020.** *Windows and doors - Environmental product declarations - Product category rules for windows and doors.* Berlin: Beuth Verlag GmbH, 2020.

Product group Roof windows

Page 29

9 Annex

Description of life cycle scenarios for Plastic roof window RotoQ

Pro	duct st	age	Co struc proc sta	ction cess			Us	se stag	je*			E	nd-of-l	ife stag	e	Benefits and loads beyond system boundaries
A1	A2	A3	A4	A5	B1	B2	В3	В4	В5	B6	B7	C1	C2	C3	C4	D
Raw material supply	Transport	production	Transport	Construction/installation process	Use	maintenance	Repair	replacement	Refurbishment	Operational energy use	Operational water use	Deconstruction/demolition	Transport	Waste processing	Disposal	Reuse Recovery Recycling potential
~	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	~	~	✓	~	~	~

* For declared B-modules, the calculation of the results is performed taking into account the specified RSL related to one year **Table 11** Overview of applied life cycle stages

The scenarios were calculated taking into account the defined RSL (see 4 Use stage).

The scenarios were furthermore based on the research project "EPDs for transparent building components" (1) and on EN 17213 (2).

<u>Note:</u> The standard scenarios selected are presented in bold type. They were also used for calculating the indicators in the summary table.

- ✓ Included in the LCA
- Not included in the LCA

Product group Roof windows

A4 Transport to construction site					
No.	Scenario		Description		
A4.1	Direct delivery Germany	,		-6 mix), diesel, 27 t payload, m return journey 25 % load ¹	
A4.2	Small series via distributors		and 150 km return	6 Mix), diesel, 27 t payload, ful trip empty; 7.5 t truck (Euro 0- 6 load ¹ , 50 km one way and 50 00 km.	-6 Mix), diesel,
¹ Capacity used: utilized loading capacity of the truck					
A4 Transport to the construction site ² Trans			nsport weight [kg/m²]	Net density [kg/m³]	Thickness [mm]
PG 1: Q4 Plastic double glazing		61.82	238.52	176.62	
PG 2: Q4 Plastic triple glazing		93.75	290.83	176.62	
PG 3: Q4 Plastic acoustic glazing		78.26	345.02	176.62	

Drive unit Q4

² The volume utilization factor is not stated due to uncertain determination.

The scenarios were calculated per kg and can be scaled to the product group using the above masses. The values in the overall results table are shown per 1 m².

2.38

A4 Transport to construction site	Unit	A4.1	A4.2
	Core indicators		
GWP-t	kg CO ₂ equivalent	2.63E-02	0.19
GWP-f	kg CO ₂ equivalent	2.65E-02	0.19
GWP-b	kg CO ₂ equivalent	-3.66E-04	-2.63E-03
GWP-I	kg CO ₂ equivalent	2.41E-04	1.74E-03
ODP	kg CFC-11-eq.	3.39E-15	2.44E-14
AP	mol H⁺-eq.	3.17E-05	5.52E-04
EP-fw	kg P-eq.	9.52E-08	6.85E-07
EP-m	kg N-eq.	1.09E-05	2.47E-04
EP-t	mol N-eq.	1.28E-04	2.78E-03
РОСР	kg NMVOC-eq.	2.78E-05	5.12E-04
ADPF	MJ	0.36	2.55
ADPE	kg Sb equivalent	1.72E-09	1.23E-08
WDP	m ³ world-eq. deprived	3.15E-04	2.27E-03
	Resource managemen	t	
PERE	MJ	2.58E-02	0.19
PERM	MJ	0.00	0.00
PERT	MJ	2.58E-02	0.19
PENRE	MJ	0.36	2.56
PENRM	MJ	0.00	0.00
PENRT	MJ	0.36	2.56
SM	kg	0.00	0.00
RSF	MJ	0.00	0.00
NRSF	MJ	0.00	0.00
FW	m ³	2.83E-05	2.04E-04
	Categories of waste		
HWD	kg	1.10E-12	7.94E-12
NHWD	kg	5.43E-05	3.91E-04
RWD	kg	6.67E-07	4.80E-06
	Output material flows		
CRU	kg	0.00	0.00
MFR	kg	0.00	0.00

Page 30

--

MER	kg	0.00	0.00
EEE	MJ	0.00	0.00
EET	MJ	0.00	0.00
	Additional environmental impa	act indicators	
PM	Disease incidence	2.26E-10	4.11E-09
IRP	kBq U235-eq.	9.94E-05	7.15E-04
ETPfw	CTUe	0.25	1.81
HTPc	CTUh	5.16E-12	3.72E-11
HTPnc	CTUh	2.75E-10	2.16E-09
SQP	dimensionless	0.15	1.07

A5 Construction/Installation

No.	Scenario	Description
А5	Manual	According to the manufacturer, the elements are installed without mechanical handling. Packaging materials are recycled.

In case of deviating consumption during installation/assembly of the products which forms part of the site management, they are covered at the building level.

Ancillary materials, consumables, use of energy and water, other resource use, material losses, direct emissions as well as waste / output materials during construction / installation are negligible.

It is assumed that the packaging material in the Module construction / installation is sent to waste handling. Waste is only thermally recycled in line with the conservative approach: Benefits from A5 are specified in module D. Benefits from waste incineration: Benefits from waste incineration: electricity replaces electricity mix (RER); thermal energy replaces thermal energy from European natural gas (RER). Transport to the recycling plants is not taken into account.

Since this is a single scenario, the results are shown in the summary table.

B1 Use

Test reports are available for the evaluation of emissions of volatile organic compounds according to ISO 16000. The following additional information is part of the life cycle assessment. The values result from a test over 28 days.

No.	Scenario	Description
B1	Normal intended use	Release of substances (indoors or outdoors) into the indoor air. VOC emissions [µg/m³ (TVOC)]: 34.0

Emissions to soil and water cannot be quantified. See EN 15804 Clause 5.4.4 and Clause 6.3.5.4.2. There are no horizontal standards with harmonized test methods.

Since this is a single scenario, the results are shown in the summary table. There, the results were related to one year, taking into account the reference service life.

No.	Scenario	Description
B2.1	Rarely, manual	Height of less than 2.5 m or industrial climber, manually using suitable cleaning agents and, if necessary, an (extension) pole; annually. (2) 2.5 I consumed per m ² and cleaning (125 I / 50 yr). (1)

Ancillary materials, consumables, use of energy and water, material losses and waste as well as transport distances during cleaning are negligible.

Since this is a single scenario, the results are shown in the summary table. There, the results were related to one year, taking into account the reference service life.

B2.2 N	B2.2 Maintenance and repair		
No.	Scenario	Description	
B2.2	Lubrication: Low utilisation (e.g. residential construction)	Biennially: Functional test, visual inspection, lubrication/greasing of the building hardware, checking for damage and carrying out maintenance work* if necessary. (2) 0.125 kg lubricant per 50 years. (1)	
	Replacement of worn parts: Normal use and heavy use	According to BBSR table: One-time replacement*: Hardware, glazing, sealing. According to EN 17213: One-time replacement*: Drive units. (2)	

* Assumptions for evaluation of possible environmental impacts; statements made do not constitute any guaranty or warranty of performance.

For updated information refer to the respective instructions for assembly/installation, operation and maintenance from Roto Frank DST Produktions-GmbH.

The service life of the Plastic roof window RotoQ of company Roto Frank DST Produktions-GmbH is specified as 40 years. For scenario B2, the respective components of the building elements whose useful life is less than the specified RSL are accounted for. The results were based on one year, taking into account the RSL.

It is assumed that the replaced components will be recycled in the maintenance module. Metals and glass into the melt (material recycling), plastics to incineration plants. Drive units are partially recycled, residual materials are sent to landfill (see recycling C3). Benefits from B3 are specified in module D. Benefits from waste incineration: electricity replaces electricity mix (RER); thermal energy replaces thermal energy from European natural gas (RER).

Transport to the recycling plants is not taken into account.

Ancillary materials, consumables, use of energy and water, waste, material losses and transport distances during maintenance are negligible.

Since this is a single scenario, the results are shown in the summary table. The replacement of the drive units is shown in a separate overall results table. There, the results were related to one year, taking into account the reference service life.

Page 33

Product group Roof windows

B3 Repa	B3 Repair (not relevant)			
No.	Scenario	Description*		
B3	Normal use	As the installation location is unknown, the repair of accidental damage according to EN 17213 must not be taken into account.		
	ptions for evaluation of possible envi y of performance.	ronmental impacts; statements made do not constitute any guaranty or		
	ated information refer to the relev ntenance	ant manufacturer instructions for assembly/installation, operation		
-	materials, consumables, use of aintenance are negligible.	energy and water, waste, material losses and transport distances		
	is is a single scenario, the results ear, taking into account the refere	s are shown in the summary table. There, the results were related ence service life.		
B4 Exch	ange/replacement			
No.	Scenario	Description		
		One-time replacement after 40 years (RSL)*: The product-specific RSL of 25 years is taken into account for drive units.		
B4	Normal, high and exceptional loads	The environmental impacts of the selected scenario originate from the product, construction and disposal phases. Ancillary materials, consumables, use of energy and water, material losses, waste as well as transport distances are taken into account. (Addition of A modules, C modules and module D)		
	tions for evaluation of possible envi of performance.	ronmental impacts; statements made do not constitute any guaranty or		
The stat	ements made in this EPD are onl	y informative to allow evaluation at the building level.		
windows	It is assumed that a one-time replacement will be necessary during the 40-year reference service life for windows according to BBSR table and/or 25-year reference service life for the drive units according to EN 17213 and the 50-year building service life.			
	For updated information refer to the relevant manufacturer "instructions for assembly/installation, operation and maintenance".			
units and		as are shown in the summary table. The replacement of the drive on in a separate overall results table. Results in the overall results to account the RSL.		
environn		selected scenario does not result in any relevant inputs/outputs or ls, consumables, use of energy and water, material losses, waste ole.		

Page 34

B5 Improvement/modernisation (not relevant)

According to the manufacturer, the elements are not included in the improvement / modernisation activities for buildings.

For updated information refer to the respective instructions for assembly/installation, operation and maintenance of company Roto Frank DST Produktions-GmbH.

Ancillary materials, consumables, use of energy and water, material losses, waste as well as transport distances during replacement are negligible.

Since this is a single scenario, the results are shown in the summary table. There, the results were related to one year, taking into account the reference service life.

B6 Operational energy use

No.	Scenario	Description	
B6.1	manual	No energy consumed when used.	
B6.2	power-operated normal use	For window variants with drive unit, the energy consumption is taken into account as follows: per 40 years: 3.4 Wh/cycle, 1 cycle per day*. 49.07 kWh/RSL electricity (including standby mode) Electricity mix (RER). Worst case assumption via drive unit Q4 including all additional electrical system parts (control unit, sensors, buttons, etc.).	

* Frequencies, times of use, number of users, cycles, etc. as specified by the manufacturer

There is no transport consumption for energy use in buildings. Ancillary materials, consumables and water, waste materials and other scenarios are negligible.

In the following table, the results were based on one year, taking into account the RSL.

B6 Operational energy use	Unit	B6.1	B6.2	
Core indicators				
GWP-t	kg CO ₂ equivalent	0.00	0.38	
GWP-f	kg CO ₂ equivalent	0.00	0.37	
GWP-b	kg CO ₂ equivalent	0.00	3.95E-03	
GWP-I	kg CO ₂ equivalent	0.00	4.18E-05	
ODP	kg CFC-11-eq.	0.00	7.70E-12	
AP	mol H⁺-eq.	0.00	1.18E-03	
EP-fw	kg P-eq.	0.00	1.58E-06	
EP-m	kg N-eq.	0.00	2.04E-04	
EP-t	mol N-eq.	0.00	2.14E-03	
POCP	kg NMVOC-eq.	0.00	5.60E-04	
ADPF	MJ	0.00	7.85	
ADPE	kg Sb equivalent	0.00	7.60E-08	
WDP	m ³ world-eq. deprived	0.00	7.20E-02	
	Resource managem	ent		
PERE	MJ	0.00	5.40	
PERM	MJ	0.00	0.00	
PERT	MJ	0.00	5.40	
PENRE	MJ	0.00	7.85	

Page 35

Product group Roof windows

PENRM	MJ	0.00	0.00	
PENRT	MJ	0.00	7.85	
SM	kg	0.00	0.00	
RSF	MJ	0.00	0.00	
NRSF	MJ	0.00	0.00	
FW	m³	0.00	2.38E-03	
	Categories of was	te		
HWD	kg	0.00	-7.40E-10	
NHWD	kg	0.00	7.08E-03	
RWD	kg	0.00	1.24E-03	
	Output material flows			
CRU	kg	0.00	0.00	
MFR	kg	0.00	0.00	
MER	kg	0.00	0.00	
EEE	MJ	0.00	0.00	
EET	MJ	0.00	0.00	
A	dditional environmental imp	act indicators		
PM	Disease incidence	0.00	1.04E-08	
IRP	kBq U235-eq.	0.00	0.12	
ETPfw	CTUe	0.00	3.18	
HTPc	CTUh	0.00	1.39E-10	
HTPnc	CTUh	0.00	2.93E-09	
SQP	dimensionless	0.00	3.55	

B7 Operational water use

No water consumption when used as intended. Water consumption for cleaning is specified in Module B2.1.

There is no transport consumption for water use in buildings. Ancillary materials, consumables, waste materials and other scenarios are negligible.

Since this is a single scenario, the results are shown in the summary table. There, the results were related to one year, taking into account the reference service life.

C1 Deconstruction

No.	Scenario	Description	
C1.1	Deconstruction (Market situation)	According to EN 17213 (Figure B.2) (2): Plastic roof window (PVC) RotoQ: Deconstruction 75% for non-glass content Deconstruction 30% for glass Remainder to landfill. The worst-case scenario is assumed for drive units: Deconstruction 75% Remainder to landfill. Further deconstruction rates are possible, give adequate reasons.	

Page 36

negligibl In case o	C1.2Recycling initiative Dekura and RewindoPlastic roof window (PVC) RotoQ: Deconstruction 100% for non-glass content Deconstruction 100% for glass 									
C2 Tran	isport									
No.	Scenario	Description								
C2	TransportTransport to collection point using 40 t truck (Euro 0-6 Mix Diesel, 27t payload, 80% capacity used1, 50 km. (1)									
¹ Capacity ι	used: utilized loading capacity of the truck									
C2 Transp	ort to recycling contro ²	Transmost weight [leg/m2]								
C2 Transport to recycling centre ² Transport weight [kg/m ²] Thickness [mm]										
		42.60	176.62							
PG 1: Q4 P	Plastic double glazing Plastic triple glazing									
PG 1: Q4 P PG 2: Q4 P	Plastic double glazing	42.60	176.62							
PG 1: Q4 P PG 2: Q4 P PG 3: Q4 P Drive unit	Plastic double glazing Plastic triple glazing Plastic acoustic glazing Q4	42.60 51.93 61.61 2.38	176.62 176.62							
PG 1: Q4 P PG 2: Q4 P PG 3: Q4 P Drive unit ² The volum Since or	Plastic double glazing Plastic triple glazing Plastic acoustic glazing Q4 ne utilization factor is not stated due to uncert	42.60 51.93 61.61 2.38	176.62 176.62 176.62 							
PG 1: Q4 P PG 2: Q4 P PG 3: Q4 P Drive unit ² The volum Since or	Plastic double glazing Plastic triple glazing Plastic acoustic glazing Q4 ne utilization factor is not stated due to uncert nly one scenario is used, the resu	42.60 51.93 61.61 2.38 ain determination.	176.62 176.62 176.62 							

Product group Roof windows

Page 37

		 Drive units and (electrical) components Electrical components (drive unit, circuit board, control unit, sensors, buttons, etc.) 87% (based on waste electrical equipment 87%; UBA, 2018) 100% metals in melt Plastics 100% thermal recycling in incineration plants Wood 100 % thermal recycling in incineration plant Cardboard/paper 100 % thermal recycling in incineration plant Remainder to landfill.
C3.2	Recycling initiative Dekura and Rewindo (not considered for drive units)	 Share for recirculation of materials (2) Plastic roof window (PVC) RotoQ: 100% metals in melt 100% glass in melt PVC 100% recycled material Residual plastics 100% thermal recycling in incineration plants

Electricity consumption of recycling plant: 1.8 kWh/product.

As the products are placed on the European market, the disposal scenario is based on average European data sets.

The below table presents the disposal processes and their percentage by mass/weight. The calculation is based on the above mentioned shares in percent related to the declared unit of the product system.

C3 Disposal window variants		C3.1			C3.2		
		PG 1	PG 2	PG 3	PG 1	PG 2	PG 3
Collection process, collected separately	kg	22.42	25.45	28.87	42.60	51.93	61.61
Collection process, collected as mixed construction waste	kg	20.18	26.49	32.74	0.00	0.00	0.00
Recovery system, for re-use	kg	0.00	0.00	0.00	0.00	0.00	0.00
Recovery system, for recycling	kg	17.24	20.23	23.32	40.37	49.84	59.16
Recovery system, for energy recovery	kg	5.18	5.22	5.55	2.23	2.10	2.45
Disposal	kg	20.18	26.49	32.74	0.00	0.00	0.00

The 100% scenarios differ from the current average recovery (current market situation, in background report C3.1). The evaluation of the 100% scenarios is described in the background report.

Window variants									
C3 Disposal	Unit	C	3.1 Market situati	on	C3.2 Recycling initiative Dekura and Rewindo				
	Unit	PG 1	PG 2	PG 3	PG 1	PG 2	PG 3		
	Core indicators								
GWP-t	kg CO ₂ equivalent	11.20	11.30	12.10	5.66	5.44	6.35		
GWP-f	kg CO ₂ equivalent	11.00	11.10	12.00	5.46	5.25	6.15		
GWP-b	kg CO ₂ equivalent	0.15	0.15	0.15	0.20	0.20	0.20		
GWP-I	kg CO ₂ equivalent	5.61E-04	5.83E-04	5.97E-04	4.12E-05	4.18E-05	4.67E-05		
ODP	kg CFC-11-eq.	8.36E-12	8.54E-12	8.68E-12	3.55E-12	3.53E-12	3.59E-12		
AP	mol H⁺-eq.	3.66E-03	3.48E-03	3.57E-03	2.68E-03	2.35E-03	2.44E-03		

Product group Roof windows

Page 38

EP-fw	kg P-eq.	2.20E-06	2.26E-06	2.30E-06	8.01E-07	7.97E-07	8.22E-07
EP-m	kg N-eq.	1.34E-03	1.23E-03	1.26E-03	1.09E-03	9.24E-04	9.47E-04
EP-t	mol N-eq.	1.65E-02	1.53E-02	1.58E-02	1.29E-02	1.10E-02	1.14E-02
POCP	kg NMVOC-eq.	3.60E-03	3.34E-03	3.41E-03	2.83E-03	2.41E-03	2.47E-03
ADPF	MJ	15.10	15.40	15.80	4.43	4.32	4.47
ADPE	kg Sb equivalent	7.72E-08	7.87E-08	8.00E-08	3.50E-08	3.47E-08	3.53E-08
WDP	m ³ world-eq. deprived	1.10	1.11	1.18	0.55	0.52	0.60
			Resource mana	gement			
PERE	MJ	6.13	315.42	123.36	3.63	312.82	120.71
PERM	MJ	-1.18	-310.38	-118.24	-1.18	-310.38	-118.24
PERT	MJ	4.95	5.04	5.12	2.45	2.44	2.47
PENRE	MJ	129.27	37.77	24.32	118.60	26.70	12.99
PENRM	MJ	-114.17	-22.37	-8.52	-114.17	-22.37	-8.52
PENRT	MJ	15.10	15.40	15.80	4.43	4.33	4.47
SM	kg	0.00	0.00	0.00	0.00	0.00	0.00
RSF	MJ	0.00	0.00	0.00	0.00	0.00	0.00
NRSF	MJ	0.00	0.00	0.00	0.00	0.00	0.00
FW	m³	2.72E-02	2.74E-02	2.91E-02	1.32E-02	1.26E-02	1.44E-02
			Categories of	waste			
HWD	kg	-2.02E-10	-2.11E-10	-2.08E-10	0.00	0.00	0.00
NHWD	kg	3.03	3.15	3.23	0.00	0.00	0.00
RWD	kg	8.48E-04	8.58E-04	8.70E-04	0.00	0.00	0.00
			Output materia	l flows			
CRU	kg	0.00	0.00	0.00	0.00	0.00	0.00
MFR	kg	17.20	20.20	23.30	40.40	49.80	59.20
MER	kg	0.00	0.00	0.00	0.00	0.00	0.00
EE	MJ	16.60	16.60	17.80	0.00	0.00	0.00
EET	MJ	29.90	30.00	32.20	0.00	0.00	0.00
		Additiona	al environmental	impact indicators	5		
РМ	Disease incidence	4.47E-08	4.56E-08	4.69E-08	1.25E-08	1.18E-08	1.26E-08
IRP	kBq U235-eq.	9.02E-02	9.13E-02	9.30E-02	5.55E-02	5.50E-02	5.63E-02
ETPfw	CTUe	8.85	9.12	9.33	1.81	1.79	1.87
HTPc	CTUh	3.85E-10	3.95E-10	4.06E-10	9.49E-11	9.31E-11	9.87E-11
HTPnc	CTUh	3.09E-08	3.20E-08	3.27E-08	2.80E-09	2.73E-09	2.95E-09
SQP	dimensionless	4.01	4.09	4.18	1.75	1.73	1.78

For the separate presentation of drive units including electrical components, only the current market situation is shown.

C3 Disposal Drive Unit Q4	Unit	C3.1
Collection process, collected separately	kg	1.79
Collection process, collected as mixed construction waste	kg	0.60
Recovery system, for re-use	kg	0.00
Recovery system, for recycling	kg	1.37
Recovery system, for energy recovery	kg	0.30
Disposal	kg	0.71

Since this is a single scenario, the results are shown in the corresponding overall results tables. There, the results were related to one year, taking into account the reference service life.

C4 Disp	osal						
No.	Scenario		Description				
C4.1	Disposal (Market situation)		The non-recordable amounts and losses within the re- use/recycling chain (C1 and C3) are modelled as "disposed" (RER).				
C4.2	Recycling initiative De and Rewindo	ekura	The non-record use/recycling c (RER).				
	% scenarios differ fro						
the disp	sumption in scenario (osal site. The benefit to Module D, e.g. ele riants	s obtained	here from the	e substitution	of primary		
			C4.1 Market situati	on	C4.2 Recycling	g initiative Dekur	a and Rewindo
C4 Landfill	Unit	PG 1	PG 2	PG 3	PG 1	PG 2	PG 3
			Core indicat	ors			
GWP-t	kg CO ₂ equivalent	0.29	0.39	0.48	0.00	0.00	0.00
GWP-f	kg CO ₂ equivalent	0.30	0.40	0.49	0.00	0.00	0.00
GWP-b	kg CO2 equivalent	-1.01E-02	-1.32E-02	-1.63E-02	0.00	0.00	0.00
GWP-I	kg CO ₂ equivalent	9.42E-04	1.24E-03	1.53E-03	0.00	0.00	0.00
ODP	kg CFC-11-eq.	7.71E-13	1.01E-12	1.25E-12	0.00	0.00	0.00
AP	mol H⁺-eq.	2.15E-03	2.82E-03	3.49E-03	0.00	0.00	0.00
EP-fw	kg P-eq.	6.10E-07	8.01E-07	9.90E-07	0.00	0.00	0.00
EP-m	kg N-eq.	5.56E-04	7.29E-04	9.01E-04	0.00	0.00	0.00
EP-t	mol N-eq.	6.11E-03	8.02E-03	9.92E-03	0.00	0.00	0.00
POCP	kg NMVOC-eq.	1.68E-03	2.20E-03	2.72E-03	0.00	0.00	0.00
ADPF	MJ	4.03	5.30	6.55	0.00	0.00	0.00
ADPE	kg Sb equivalent	1.40E-08	1.83E-08	2.27E-08	0.00	0.00	0.00
WDP	m ³ world-eq. deprived	3.33E-02	4.37E-02	5.40E-02	0.00	0.00	0.00
			Resource mana				
PERE	MJ	1.72	323.94	135.18	1.06	323.08	134.11
PERM	MJ	-1.06	-323.08	-134.11	-1.06	-323.08	-134.11
PERT	MJ	0.66	0.86	1.07	0.00	0.00	0.00
PENRE	MJ	106.81	28.58	16.21	102.77	23.28	9.66
PENRM	MJ	-102.77 4.04	-23.28	-9.66 6.55	-102.77 0.00	-23.28 0.00	-9.66 0.00
SM	kg	0.00	0.00	0.00	0.00	0.00	0.00
RSF	MJ	0.00	0.00	0.00	0.00	0.00	0.00
NRSF	MJ	0.00	0.00	0.00	0.00	0.00	0.00
FW	m ³	1.02E-03	1.34E-03	1.65E-03	0.00	0.00	0.00
			Categories of				
HWD	kg	8.80E-11	1.15E-10	1.43E-10	0.00	0.00	0.00
NHWD	kg	20.20	26.50	32.80	0.00	0.00	0.00
RWD	kg	4.60E-05	6.03E-05	7.46E-05	0.00	0.00	0.00
			Output materia	lflows			
CRU	kg	0.00	0.00	0.00	0.00	0.00	0.00

MER	kg	0.00	0.00	0.00	0.00	0.00	0.00		
EE	MJ	0.00	0.00	0.00	0.00	0.00	0.00		
EET	MJ	0.00	0.00	0.00	0.00	0.00	0.00		
	Additional environmental impact indicators								
РМ	Disease incidence	2.64E-08	3.47E-08	4.29E-08	0.00	0.00	0.00		
IRP	kBq U235-eq.	5.31E-03	6.96E-03	8.61E-03	0.00	0.00	0.00		
ETPfw	CTUe	2.20	2.89	3.57	0.00	0.00	0.00		
HTPc	CTUh	3.39E-10	4.45E-10	5.50E-10	0.00	0.00	0.00		
HTPnc	CTUh	3.73E-08	4.89E-08	6.05E-08	0.00	0.00	0.00		
SQP	dimensionless	0.98	1.29	1.59	0.00	0.00	0.00		

The 100% scenarios differ from the current average recovery shown here (current market situation, in background report C4.1). The evaluation of each scenario is described in the background report.

The consumption in scenario C4 results from physical pre-treatment, waste recycling and management of the disposal site. The benefits obtained here from the substitution of primary material production are allocated to Module D, e.g. electricity and heat from waste incineration.

For the separate presentation of drive units including electrical components, only the current market situation is shown. Since this is a single scenario, the results are shown in the overall results table. There, the results were related to one year, taking into account the reference service life.

Since this is a single scenario, the results are shown in the summary table.

D Benefits and loads from beyond the system boundaries

No.	Scenario	Description
D1	Recycling potential (current market situation)	Aluminum scrap from C3 excluding the scrap used in A3 replaces 60% of Aluminum ingots; Steel scrap from C3 excluding the scrap used in A3 replaces 60% of steel; Stainless steel scrap from C3 excluding the scrap used in A3 replaces 60% of stainless steel; Glass recyclate from C3 excluding the glass shards used in A3 replace 60% of container glass; PVC, glass fiber reinforced PVC, PS, PES recyclate from C3 excluding the plastics used in A3 replaces 60% of PVC granules; Electrical scrap from C3 excluding the scrap used in A3 replaces 60% of the respective electrical component. Benefits from incineration plant: Benefits from waste incineration: electricity replaces electricity mix (RER); thermal energy replaces thermal energy from European natural gas (RER).
D2	Recycling initiative Dekura and Rewindo	Aluminium recyclate from C3 excluding the recyclate used in A3 replaces 60% of aluminum ingots; Steel scrap from C3 excluding the scrap used in A3 replaces 60% of steel; Stainless steel scrap from C3 excluding the scrap used in A3 replaces 60% of stainless steel sheet;

Product group Roof windows

Glass recyclate from C3 excluding the glass shards used in A3 replace 60% of container glass; PVC, glass fiber reinforced PVC, PS, PES recyclate from C3 excluding the plastics used in A3 replaces 60% of PVC granules; Benefits from incineration plant: Benefits from waste

incineration: electricity replaces electricity mix (RER); thermal energy replaces thermal energy from European natural gas (RER).

Window variants

D		[01 Market situatio	on	D2 Recycling initiative Dekura and Rewindo			
Recycling	Unit	PG 1	PG 2	PG 3	PG 1	PG 2	PG 3	
			Core indica	tors				
GWP-t	kg CO ₂ equivalent	-49.70	-60.00	-63.10	-66.70	-80.40	-86.70	
GWP-f	kg CO ₂ equivalent	-49.60	-59.90	-63.00	-66.50	-80.10	-86.50	
GWP-b	kg CO ₂ equivalent	-9.43E-02	-0.12	-0.12	-0.16	-0.20	-0.21	
GWP-I	kg CO ₂ equivalent	-1.23E-02	-1.59E-02	-1.43E-02	-1.81E-02	-2.24E-02	-2.12E-02	
ODP	kg CFC-11-eq.	-1.84E-10	-2.15E-10	-2.17E-10	-2.60E-10	-2.99E-10	-3.10E-10	
AP	mol H⁺-eq.	-0.21	-0.30	-0.29	-0.28	-0.38	-0.39	
EP-fw	kg P-eq.	-4.47E-05	-5.66E-05	-5.31E-05	-6.53E-05	-7.96E-05	-7.83E-05	
EP-m	kg N-eq.	-4.91E-02	-6.64E-02	-7.10E-02	-6.79E-02	-9.12E-02	-0.10	
EP-t	mol N-eq.	-0.56	-0.76	-0.80	-0.77	-1.04	-1.15	
POCP	kg NMVOC-eq.	-0.13	-0.18	-0.18	-0.19	-0.24	-0.26	
ADPF	MJ	-697.00	-874.00	-892.00	-1010.00	-1240.00	-1310.00	
ADPE	kg Sb equivalent	-1.23E-05	-1.45E-05	-1.44E-05	-1.63E-05	-1.91E-05	-1.91E-05	
WDP	m ³ world-eq. deprived	-2.21	-3.16	-2.89	-2.92	-4.04	-3.95	
			Resource mana	gement				
PERE	MJ	-85.10	-109.00	-106.00	-117.00	-146.00	-148.00	
PERM	MJ	0.00	0.00	0.00	0.00	0.00	0.00	
PERT	MJ	-85.10	-109.00	-106.00	-117.00	-146.00	-148.00	
PENRE	MJ	-698.00	-875.00	-893.00	-1010.00	-1240.00	-1310.00	
PENRM	MJ	0.00	0.00	0.00	0.00	0.00	0.00	
PENRT	MJ	-698.00	-875.00	-893.00	-1010.00	-1240.00	-1310.00	
SM	kg	-0.20	-0.38	-0.18	-0.20	-0.38	-0.18	
RSF	MJ	0.00	0.00	0.00	0.00	0.00	0.00	
NRSF	MJ	0.00	0.00	0.00	0.00	0.00	0.00	
FW	m³	-9.52E-02	-0.13	-0.12	-0.15	-0.18	-0.19	
			Categories of	waste				
HWD	kg	-1.40E-04	-1.41E-04	-1.50E-04	0.00	0.00	0.00	
NHWD	kg	-7.19	-12.40	-8.41	0.00	0.00	0.00	
RWD	kg	-1.85E-02	-2.41E-02	-2.35E-02	0.00	0.00	0.00	
			Output materia	I flows				
CRU	kg	0.00	0.00	0.00	0.00	0.00	0.00	
MFR	kg	0.00	0.00	0.00	0.00	0.00	0.00	
MER	kg	0.00	0.00	0.00	0.00	0.00	0.00	
EE	MJ	0.00	0.00	0.00	0.00	0.00	0.00	
EET	MJ	0.00	0.00	0.00	0.00	0.00	0.00	
		Addition	al environmental	impact indicators	5			
PM	Disease incidence	-2.15E-06	-2.89E-06	-2.62E-06	-2.70E-06	-3.57E-06	-3.42E-06	
IRP	kBq U235-eq.	-2.42	-3.10	-3.26	-3.41	-4.30	-4.64	
ETPfw	CTUe	-530.00	-802.00	-724.00	-755.00	-1090.00	-1060.00	
HTPc	CTUh	-6.19E-08	-8.77E-08	-7.95E-08	-7.70E-08	-1.10E-07	-1.01E-07	
HTPnc	CTUh	-5.31E-07	-6.25E-07	-6.67E-07	-7.35E-07	-8.63E-07	-9.38E-07	
SQP	dimensionless	-54.70	-70.50	-68.10	-75.70	-95.10	-96.20	

Product group Roof windows

The values in Module D result from recycling of the packaging material in Module A5 and from deconstruction at the end of service life.

The 100% scenarios differ from the current average recovery shown here (current market situation, in background report D1). The evaluation of each scenario is described in the background report.

For the separate presentation of drive units including electrical components, only the current market situation is shown. Since this is a single scenario, the results are shown in the overall results table. There, the results were related to one year, taking into account the reference service life.

Since this is a single scenario, the results are shown in the summary table.

Page 42

Imprint

Practitioner of the LCA PeoplePlanetProfit GmbH Gerberstraße 7 88250 Weingarten, Germany

Programme operator ift Rosenheim GmbH Theodor-Gietl-Straße 7-9 83026 Rosenheim, Germany Phone +49 (0)8031/261-0 Fax: +49 (0)8031/261-290 E-Mail: info@ift-rosenheim.de www.ift-rosenheim.de

Das Dachfenster.

Declaration holder Roto Frank DST Produktions-GmbH Wilhelm Frank Str. 38-40 97980 Bad Mergentheim, Germany

Notes

This EPD is mainly based on the work and findings of the Institut für Fenstertechnik e.V., Rosenheim (ift Rosenheim) and specifically on the ift-Guideline NA-01/4 "Allgemeiner Leitfaden zur Erstellung von Typ III Umweltproduktdeklarationen" (Guidance on preparing Type III Environmental Product Declarations.)

The work, including all its parts, is protected by copyright. Any use outside the narrow limits of copyright law without the consent of the publisher is inadmissible and punishable by law. In particular, this applies to any form of reproduction, translations, storage on microfilm and the storage and processing in electronic systems.

Layout ift Rosenheim GmbH – 2021

Photographs (front page) Roto Frank DST Produktions-GmbH

© ift Rosenheim, 2023

ift Rosenheim GmbH Theodor-Gietl-Straße 7-9 83026 Rosenheim Phone: +49 (0) 80 31/261-0 Fax: +49 (0) 80 31/261-290 E-Mail: info@ift-rosenheim.de www.ift-rosenheim.de